AD-A130 655 MULTIMODE RADAR SIGNAL PROCESSOR INTEGRATION FACILITY |/z
{U) AIR FORCE WRIGHT AERONAUTICAL LABS WRIGHT-PATTERSON
AFB OH J N HORN ET AL. MAY 83 AFWAL-TR-83-1045

UNCLASSIFIED F/G 17/9 NL

L EE

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS - 1983 ~ A

AFWAL-TR-83-1045

ADAL 30655

MULTIMODE RADAR SIGNAL PROCESSOR
INTEGRATION FACILITY

John N. Horn
2Lt Gregory A. Frascadore
Byron R. Stephens

May 1983
Interim Report for Period February 1981 - December 1982

Approved for public release; distribution unlimited

does Dt
available Dﬂc, Auetion

permit tully legible P

AVIONICS LABORATORY

AIR FORCE WRIGHT AERONAUTICAL LABORATORIES
AIR FORCE SYSTEMS COMMAND

WRIGHT-PATTERSON AIR FORCE BASE, OHIQO 45433

NOTICE

gorareors i T

When Govermment drawings, specifications, or other data are used for any purpose
other than in connection with a definitely related Government procurement operation, '
the United States Governwent thereby incurs no responsibility nor any obligation
wvhatsoever; and the fact that the government may have formulated, furnished, or in
any wvay supplied the said drawings, specifications, or other data, is not to be re-
garded by implication or otherwise as in any manner licensing the holder or any

, other person or corporation, or conveying any rights or permission to manufacture
use, or sell any patented invention that may Iin any way be related thereto.

This report has been reviewed by the Office of Public Affairs (ASD/PA) and is
releasable to the National Technical Information Service (NTIS). At NTIS, it will
be available to the general public, including foreign nations.

] This technical report has been reviewed and is approved for publication.

ACK W. BELL

Program Mgr. Analysis & Sig Processing
Analysis and Signal Processing Mission Avionics Division

FOR THE COMMANDER

$ﬂ— £ w\@0--0—9

GEORGE L. McFARLAND, Chief
i Radar Branch
Mission Avionics Division

"If your address has changed, if you wish to be removed from our mailing list, or

. if the addressee is no longer employed by your organisation please notify AFUAL /AARNM-)
W=PAFB, OB 45433 to help us maintain a current mailing list”.

‘. Copies of this report should not be returned unless return is reguired by security
. considerations, contractual cbdligations, or motice on a specific document.

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY
PRACTICABLE. THE COPY FURNISHED
TO DTIC CONTAINED A SIGNIFICANT
NUMBER OF PAGES WHICH DO NOT
REPRODUCE LEGIBLY.

i e gty

R LA S TR

b

g YT KA e

g

Q

[16. DISTRIBUTION STATEMENT (of this Report)

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS BAGE (When Date Entered)

REPORT DOCUMENTATION PAGE BEF OB O O M
T REPGRT NUMBER 3 GOVT ACCESSION NOJ 3. RECIPIENT'S CATALOG NUMBER]
AFWAL-TR-83-1045
4. TITLE (and ‘Sub"ﬂo) S. TYPE OF REPOAT & PERIOD COVERED
MULTIMODE RADAR SIGNAL PROCESSOR INTEGRATION INTERIM REPORT FOR PERIOD
FACTLITY 3 81 - 15 DEC 82
6. PERFORMING OG. REPORT NUMBER
7. AUTHOR(S) 3. CONTRACT OR GRANT NUMBER(s)
JOHN N. HORN ‘ '
2LT GREGORY A. FRASCADORE
[T G O AT (ATUAL T AR 3) RV NN T Wk
AIR FORCE WRIGHT AERONAUTICAL LABORATORIES (AFSC) 7622 05 11
WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433
11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
AVIONICS LABORATORY (AFWAL/AARM-3) May 1983

AIR FORCE WRIGHT AERONAUTICAL LABORATORIES (AFSC) ['3- NUMBER OF PAGES
| (HRIGHT-PATTERSON AIR EORCE BASE. OHIO 45433 99
. MONITORING AGENCY NAME & ADORESS(i! ditferent from Controlling Office) 1S. SECURITY CLASS. (of this report)

UNCLASSIFIED

— T TT TV R YTy T Y YTy ——
15a. DECL ASSIFICATION/ DOWNGRADING
SCHEDULE

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, i dilierent irom Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverss side i necessery and identify by block number)

Radar Signal Processing, Digital Computer.

20. ABSTRACT (Continue on reverse eide If necessary and identify by dlock number)

This effort is centered on the Multimode Radar Signal Processor (MRSP), which
is a high speed prototype signal processor based on the Westinghouse PSP-X
design. The basic objective is to gain familiarity and programming profi-
ciency with this relatively complex system, and ultimately apply its high
speed capabilities to practical radar signal processing problems. Brief
descriptions of the MRSP hardware and software configurations are included

for reader continuity. The major portion of the report describes specific— |

DD 58" 1473 toimon of 1 nov 68 13 0BsOLETE UNCLASSIFLED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

R —INCLASSIFTED

- SECURI TY CLASSIFICATION OF THIS PAGE(When Dats Entered)
(P

\ activities related to MRSP operations.

Primary among these was the development

of a software package to integrate a video ocutput display system to the MRSP.
Additionally, several representative programs were written to demonstrate the
high speed signal processing capabilities of the MRSP as a complete system.
Finally, several significant improvements were incorporated into the original
MRSP support software package provided by the contractor.

UNCLASSIFIED

SECURITY CLASSIFICATION OF Tw'® PAGE(When Deta Entered)

AFWAL -TR-83-1045

_ FOREWORD

The work described in this report was performed under AFWAL/AARM-3
in-house work unit 7622-05-11, covering the period 3 February 1981
through 15 December 1982. The work was performed by John N. Horn,
! 2Lt Gregory A. Frascadore, and Byron R. Stephens, all of AFWAL/AARM-3,
Wright-Patterson AFB OH. This report was submitted by the authors in
March 1983.

The authors wish to thank Mr. Richard C. Vanderburg for his
knowledgable advice and helpful suggestions. f

R

3w ey

AFWAL-TR-83-1045

SECTION
[

II

III

TABLE OF CONTENTS

INTRODUCTION

1.
2.
3.
MSRP

General Discussion

MSRP Overview

Program Milestones

HARDWARE DESCRIPTION

Overall Configuration

System Components

a. Physical Description

b. Vector Arithmetic Processor (VAP)
c. Control Arithmetic Processor (CAP)

d. Input/Output Controller (IOC) And Bulk
Memory

e. Direct Memory Access (OMA) Channel Bus
Controller

f. FIFO Interface

g. Differential Address Generator (DAG)
h. Console Intelligence Unit (CIU)

i. Ramtek Display System

J. VAX 11/750 Host Computer

SYSTEM SOFTWARE DESCRIPTION

General Description

Support Software Overview

CAP Support Package

Host I/0 Oriver

VAP Simulator

System Diagnostics

Host Processor Operating System

PAGE

10

10

N
1
12
13
13

14

AFWAL -TR-83-1045

= _ TABLE OF CONTENTS (Cont'd)
SECTION PAGE
v MSRP System Operations 23
1. RAMTEK Display Integration 23
- a. General Approach 27
7 b. Command File Descriptions 28 |
(1) WTEXT 29 1
- (2) WVECTOR 32
‘ (3) WPLOT 33
_ (4) WIMAGEU And WIMAGEL 35
4 (5) WLOOKUP 36
! (6) WCURSOR 38
‘. (7) RAMCLEAR 39
(8) NEGATE 40
Cc. SUMMARY 40
2. Demonstration Program 4
}: ! a. Function Description 42
"_ b. Implementation 45
' c. Timing Considerations 50
3. Program for Verification of DAG
| S Operations 51
(' a. Functional Description 52
b. Program Operation 52
c. DAG Requirement 53
| d. Considerations S4 ,
‘ | 4. Support Software Modifications 54
L V. CONCLUSIONS AND FUTURE ACTIVITIES 56

|
¢ © REFERENCES ' 93
' ‘ vi
s o -

AFWAL-TR-83-1045

- 2z ezt H ey el

L Y
TABLE OF CONTENTS (Cont'd)
SECTION
© APPENDIX A SAMPLE PROGRAM LISTINGS
| APPENDIX B FASTBIN USERS MANUAL AND INSTALLATION GUIDE
APPENDIX C CAS COMMAND FILE
i

[J
.

vii

PAGE
59
75

89

in AFWAL -TR~83-1045 5

| LIST OF ILLUSTRATIONS |

! -
; FIGURE ' PAGE ‘
: 1 MRSP Configuration 7 |
i 2 Basic RAMSTEK Instruction Set 25
i 3 Instruction Parameter Format 26
i 4 Standard Text Character Fonts 30
g 5 A Pulse Function and Fourier Transform
5 6 Sampled Fourier Transform Pair

- 7 Three-Dimensional Representations

L
!

vifd

AFWAL-TR-83-1045

SECTION I
INTRODUCTION

1. GENERAL DISCUSSION

This is an interim technical report for the MRSP Integration
Facility Program. The program is being conducted as an in-house effort
under AFWAL/AARM Work Unit Number 76220511. This report covers the
period from February 1981 through December 1982. The effort is centered
on the Multi-mode Radar Signal Processor (MRSP), which is a high speed
prototype processor based on the Westinghouse PSP-X System. The overall
objective is to "wring out" the MRSP and gain experience and programming
proficiency. This effort is intended to serve as an interim preparation
for eventual delivery of the next generation processor, which will
employ the Very High Speed Integrated Circuit (VHSIC) technology.
Included within the broad objective is the development of specific
applications and demonstration programs for the MRSP.

2. MRSP OVERVIEW

P CITTRINY

The Multi-mode Radar Signal Processor (MRSP) is configured around
the Westinghouse PSP-X Programmable Signal processor. This is a self-
contained complete signal processing system capable of operating at very
high thru-put rates on real-time data inputs. The MRSP has three major
programmable subsystems:

- Vector Arithmetic Processor (VAP)
-~ Control Arithmetic Processor (CAP)

- Input/Output Controller (IOC).

Additionally, the MRSP has a large block of high speed random access
internal storage, which is known simply as the Bulk memory. The VAP,
CAP, and IOC each have their own unique assembly language, and each is
programmed independently. However, in practical applications, the three
programs must work together in a cooperative synergistic manner. This
is pasiéa]ly accomplished through an interactive group of flags and
interrupts that enable the three programs to communicate with each

other.

AFWAL-TR-83-1045

In the usual signal processing environment, the VAP performs high
speed "number crunching" on large arrays of data which have been
initially stored in the Bulk Memory. The I0C is responsible for feeding
raw data to the VAP in just the right amounts, and at just the right
time. In turn, the IOC is responsible for receiving the processed or
partially processed data back from the VAP, and returning it to the pro-
per locations in Bulk Memory. Some processing applications, such as a
large two-dimensional Fast Fourier Transform (FFT) may require two or
more passes through the VAP before the data reaches its final form.
Additionally, in a normal environment, the IOC is responsible for
feeding the VAP-processed data to the CAP for final disposition. The
CAP is the usual MRSP interface to the “outside worid”. The "outside
world" could represent some form of display system if image data were
being processed, or it could represent some bulk storage device such as
a magnetic tape or disk. In many applications the CAP performs
additional processing on the data, such as packing or scaling, before
final disposition. The CAP is a powerful general purpose processor in
its own right, and has a comprehensive set of instructions. As a
system, the MRSP is most efficient when operating with fixed programs on
the largest possible data arrays, and in a continuous thru-put manner.

The MRSP is fully capable of operating as an independent system
once functioning VAP, CAP, and I0C programs have been loaded, and some
method of inputting raw data to the Bulk Memory has been established.
However, before it can reach this point of independence, the MRSP needs
some "outside" help. A support software package containing such
entities as editors, assemblers, linkers, loaders, and debuggers is
required to initially generate the programs that are to run in the MRSP,
These utilities cannot be independently supported by the MRSP. They
must be resident in an external "host" computer. Additionally, there
must be a hardware link (interface) between the host and the MRSP so
that software generated in the host can be loaded into the MRSP. For
this effort, a Digital Equipment Corporation (0EC) VAX 11/750 general
purpose computer is used to host the MRSP. The VAX has a very flexible
operating system that includes all resources required to fully implement
the MRSP support package. Finally,'in a practical signal processing

AFWAL-TR-83-1045

environment, some output device is required to accept the processed data
generated by the MRSP. For this application a video display system was
selected which consists of a RAMTEK Model 9351 Display Controller, and a
CONRAC 17-inch black and white television monitor. This system is capable
of supporting a video image size of 512 X 512 picture cells (pixels),

with up to 256 different intensity levels per pixel.

The major goal of the MRSP Integration Facility is to gain
experience in preparation for the next generation high speed signal
processor, which will employ the VHSIC technology. To this end, some
special options were included in the MRSP configuration so that it would
more nearly resemble the VHSIC brassboard design. For example, the MRSP ,
includes two VAP's which can operate in parallel, thereby reducing
processing time by half for certain specific applications. Additionally,
the MRSP configuration includes a Oifferential Address Generator (DAG)
option. This is a programmable hardware unit capable of generating non-
linear address sequences for the IOC and/or the VAP's. In certain
applications, this feature can significantly reduce average processing
time by eliminating the need for special address computation prior to
each data access. The dual VAP's, along with the I0OC, CAP, and DAG
option combine to make the MRSP a powerful multi-processor network capable
of sophisticated parallel operations. In this regard it emulates the future
VHSIC processor, and MRSP operations performed under this effort are
expected to ease transition to the next generation processor.

3. PROGRAM MILESTONES

Detailed milestone objectives for the MRSP Integration Facility
were established in a hierarchical manner since the actual MRSP hardware
was under fabrication, and would not be available for a year after the
program was initiated. The first major milestone was the execution of
procurement procedures necessary to purchase a host computer and an
output display system for the MRSP. This process, requiring
approximately five months, included the generation of several economic
and feasibility comparisons between 4 candidate computer systems. Many
"outside" considerations were involved in the process since this
particular computer would support several programs in addition to the

AFWAL-TR-83-1045

MRSP. A Digital Equipment Corporation (DEC) VAX 11/750 computer system
was selected and delivered to AFWAL/AARM in June 1981. Installation and
checkout of the VAX required an additional month. A RAMTEK Model 9351
Display Controller and a CONRAC television monitor were selected for the
display system, and delivered to AFWAL/AARM in July 1981. These display
components were then shipped to Westinghouse in September 1981 for
hardware interface with the MRSP.

Once the prospective host computer was in place, the next major
milestone objective was installation of the existing MRSP support software
package. This was accomplished in August 1981. The support package
contains the various assemblers, linkers, loaders, and debuggers
necessary to develop actual programs for the MRSP. Even though the
actual hardware was not yet available, the support software enabled
AFWAL/AARM personnel to gain initial insight into MRSP programming
concepts. Additionally, a software package was available from
Westinghouse which provided a high-level language (FORTRAN) simulator for
the Vector Arithmetic Processor (VAP) element of the MRSP. This is the
high speed arithmetic unit which operates on large data arrays, and is
the key to the computational power of the MRSP. The VAP simulation
package closely simulates each individual VAP instruction with a
separate FORTRAN routine. Although much slower than the actual VAP, this
package does enable the user to gain experience in programming practical
VAP-oriented signal processing problems. '

The actual MRSP hardware was delivered to AFWAL/AARM in March 1982.
One week of formal training was conducted by contractor representatives
in march 1982, and a second week in April 1982. After the MRSP hardware
was delivered, the primary objective became one of gaining familiarity
and programming proficiency. This newly acquired expertise was then
utilized to develop a package of software routines to efficiently
integrate the MRSP with the RAMTEK display system. Additionally, several
representative programs to demonstrate the processing power of the MRSP
were written,

AFWAL -TR-83-1045

Program development for the MRSP necessarily entails an extensive
involvement with the MRSP support software package. This package was
delivered with the system, but is not tailored to operate with any
specific host computer. The MRSP system user is responsible for
providing his own host. The support software design is flexible, and
will accommodate a variety of potential host configurations.
Consequently, it is probable that some of the support routines can be
made to operate more efficiently if certain unique capabilities of a
particular host are taken into account. In this regard, an additional
objective was established to incorporate VAX-specific refinements into
the support software package whenever practical.

5
#

AFWAL -TR-83-1045

SECTION II
MRSP HARDWARE DESCRIPTION

1. OVERALL CONFIGURATION

This section is included for reader continuity. It provides a top
leve! summary of the overall MRSP configuration, and briefly describes
the major hardware components. For a more detailed treatment of hardware
particulars, the reader is referred to the MRSP system manuals.

Figure 1 is a top level drawing of the basic MRSP system
architecture. The MRSP has three major programmable subsystems:

- Vector Arithmetic Processor (VAP).
- Control Arithmetic Processor (CAP).

- Input/Output Controller (10C)

Additionally, the MRSP has a large block of internal high speed storage
(2 megawords X 32 bits) which is known as the Bulk memory. The CAP, VAP,
and I0C each has its own unique assembly language, and each is

programmed independently. However, in practical applications the three
programs must work together in a cooperative manner. Two additional
devices, the Differential Address Generator (DAG), and the Direct Memory
Access (DMA) Channel Bus Controller may also be considered programmable
in a sense. However, these devices do not have unique assembly
languages, and are normally loaded from CAP routines.

The MRSP is based on the Westinghouse PSP-X Programmable Signal
Processor, which can be fabricated in several possible configurations.
This particular configuration incorporates two VAP units which can be
operated in parallel for increased computational efficiency. A VAP
normally performs high speed arithmetic on large data arrays (vectors)
which are complex in nature, i.e., they have a real and an imaginary
component. The IOC controls all data transfers into and out of the Bulk
Memory. [t is a multi-port device, although only one port is active at
any particular time. The CAP is an independent general purpose

" uoyyeanBijuo) dsyw 1 24nbyg
\

VAN

NOILVYADIINOD dSUM

VIINT |
410 T 3¥n914

4OL INOW
JVINGD ZH)
A W IR v
ts€6 BN FLETL)] Q
AWy pEIL, L
9H)

CIVITR T ¢) 3<%mmﬁ Aﬂv 28 VA (# dvA

SL18 91 X %¥9 | 24 9 64
AYOHIW dV) . -
'
LU ¢ __,rl_._). 2z \ [SLIg
VNV AHV | sue ze xamv0z 1y AH 2 K WY
'

AYOWIN AYOMIN ATNY 0414

"o \] wno
¥31T041N0D 0/1
ndd Aﬂ -
dv) td
. 1041NV)
vig)
JIVIYIUNI
L,V 0334S H9IN
01
/V 23S/3LAN 0L

SN8 WILSAS dv)

T31INO

AFWAL-TR-83-1045

¢

AFWAL-TR-83-1045

processor. it communicates with the I0C and all system interfaces
through the DMA Channel Bus Controller. The Channel Bus Controller
itself has 7 independent data channels, all of which have accéss to CAP
main memory. This particular MRSP configuration also incorporates a
Differential Address Generator (DAG) option. The DAG is a separate
programmable hardware device capable of directly generating non-
consecutive memory address sequences; For certain applications,
particularly those involving non-linear interpolations, the DAG can
significantly improve processing efficiency by eliminating the need for
special address computations prior to each data access from Bulk Memory
or VAP data memory. The DAG interfaces to the CAP through a channel on
the DMA Bus. A DEC VAX 11/750 computer system serves as host processor
for the MRSP. This system runs the MRSP support software package and
provides the resources necessary to generate and load programs into the
MRSP. The VAX can communicate with the CAP through a channel on the DMA
Bus. Additiona]iy, an output video display system consisting of a RAMTEK
Display Controller and a CONRAC television monitor is interfaced to the
MRSP. This system also communicates with the CAP through a channel on
the DMA Bus. Finally, two special options are included with this MRSP
configuration. They consist of a First-In-First-Out (FIFQ) buffer, and a
Console Intelligence Unit (CIU). The FIFO serves to interface the MRSP
to a non-synchronous data source, while the CIU is an intelligent CRT
terminal capable of a variety of support functions.

In a typical "real time" signal processing environment, the CAP,
I0C, and VAP units would operate with fixed programs on a continuous
stream of data in “"pipeline" fashion. Raw data intially enters the MRSP
through the FIFO buffer. This device accumulates data from a non-
synchronous source, and passes it to the IOC in blocks for increased
efficiently. As an example, the raw data stream could represent
unprocessed radar image returns transmitted from an aircraft currently in
the air. The IOC would accept data from the FIFO and store it in Bulk
Memory. The IOC would then feed the data to the VAP units for some form
of complex processing. If the MRSP were operating with radar image
data, specialized functions such as demultiplexing, demodulation,
frequency filtering, and detection could be performed in the VAP units.
After the data has been processed, the I0C transfers it to the CAP.

AFWAL-TR-83-1045

Assuming -that radar image data were involved, the CAP could move
the final processed results to an output display system, or
alternatively, to some mass storage device such as a magnetic tape or
disk. The CAP is a powerful general purpose processor in its own right,
and if necessary, could perform some additional data processing
operation such as scaling, encoding, or packing before final
disposition. If non-linear address sequences were required at any point
in the VAP or 10C processing, the DAG could be programmed through the
CAP or the host computer with the necessary special functions.

2. SYSTEM COMPONENTS

This section briefly summarizes the major physical and performance
characteristics of the MRSP system hardware components.
a. Physical Description

The MRSP is housed in a pair of cabinets, each with a
height of 84 inches, a depth of 36 inches, and an outside width of 44
inches. Each cabinet is capable of supporting two separate 50-board
chassis, including the required power supplies, monitors, distribution
panels, and cooling apparatus. The upper chassis in Cabinet #1 contains
the CAP Central Processor Unit (CPU) and memory, the IOC, the Bulk
Memory, the DAG, and the DMA Channel Bus Controller. The lower chassis
in this same cabinet contains VAP #1. The upper chassis in Cabinet #2
is empty, and the lower chassis contains VAP #2. Integrated circuitry
for the MRSP is based on 9 x 12 inch multi-wire boards. Each cabinet
contains three (3) five-volt 350-Ampere power supplies, and one (1) two-
volt 200-Ampere power supply. Two of the supplies in Cabinet #2 are not
actually used, and could serve as spares. Access to the boards and
power supplies is provided by three sets of doors on the front of each
cabinet, while access to backplane wiring and cabling is provided
through two sets of doors at the rear of each cabinet.

b. Vector Arithmetic Processor

The VAP is designed to perform high speed complex operations
(real and imaginary components) on large data arrays (vectors). It
incorporates a powerful instruction set which includes 3 types of Fast

AFWAL -TR-83-1045

Fourier Transform (FFT) instructions, 4 different filter instructions,
and more than 70 assorted arithmetic, logical, and control instructions.
Basic clock for the VAP is 100 nanoseconds, and it is capable of a 10
megahertz "pipeline" processing and thruput rate. The VAP is oriented
toward the "butterfly" computations required for FFT operations, and it
can perform a full 1024 point-weighted FFT in approximately 0.6
milliseconds. It is also capable of executing a full 16 X 16 bit complex
multiply in one clock cycle. From a hardware standpoint, the VAP
arithmetic unit includes 4 multipliers and 6 ALU's, which are configured
by microprogram control. There are 6 data memories, each 4096 words X 32
bits. The VAP also has dual input and dual output buffers. Each
input/output buffer memory is 4096 words X 32 bits. The microprogrammmed
control structure implemented in the VAP enables an experienced user to
customize his own specialized instructions for increased efficiency.

¢. Control Arithmetic Processor

The CAP is a 16-bit architecture general purpose processor,
but is capable of 32-bit double precision and floating point operations.
It has a powerful instruction set consisting of approximately 200
assorted arithmetic, logical, and control instructions. Several
addressing modes are possible, including direct, indirect, indexed, and
immediate. High level languages, including JOVIAL and FORTRAN are
supported by the CAP. The central processing unit includes 16 general
purpose registers, 32 vectored interrupts, and a memory management
capability. The CAP has a 64K X 16-bit main memory, which could be
expanded up to one megaword with additional memory boards. By means of
the DMA Channel Bus Controller, the CAP can access up to 7
external/internal interfaces, at rates of up to 8 megabytes/second.

d. Input/Output Controller and Bulk Memory

The I0C is a microprogrammed processor which formats and
transfers data between the Bulk Memory and the VAP, CAP, host computer,
and external high speed buffers. [t is capable of 100 nanosecond
sequential read/write operations. The IOC has 8 independent ports, each
accessing Bulk Memory, and each controlled by its own set of instructions
in the program memory. It has a port priority control system, and 32

10

AFWAL -TR-83-1045

flags which can be set or sensed by port programs to provide
synchronization between subsystems. The I0OC instruction set provides
complete flexibility in moving data into and out of the Bulk Memory.
Addresses -can be updated in either an indexed or an offset mode, or non-
linearly generated VIA the DAG. Large blocks of data can be moved with
a single instruction. Any desired packing factor, i.e., full 32 bits,
upper 16 bits, or lower 16 bits can be incorporated into any
instruction. The Bulk Memory itself consists of 2 megawords X 32 bits
of high speed random access storage.

e, Direct Memory Access Channel Bus Controller

The DMA Channel Bus Controller provides a programmable
interface between any of the external devices connected to the Channel
Bus, and the main memory of the CAP processor. It also serves as a
direct interface between any two of the devices. The DMA Controller is
capable of managing up to 7 independent channels. At any particular
instant only one channel has control of the bus, but at that instant
there could be up to 7 transfers in various stages of completion. This
"interleaved" operation enhances traffic flow efficiency on the bus.
Details pertinent to Channel Bus transfers are specified by up to four
16-bit control words. Each channel has its own control word sequence,
and each has its own “hard” registers for control word storage. The DMA
Channel Bus Control words may be loaded in either of two ways. First,
any control word sequence can always be loaded directly by the CAP
through the use of hard register instructions. Additionally, it is pos-
sible for some interfaces to load their own control words. In this
latter case, the first words received by the channel would be
interpreted as the control words. These would then specify how the
following words were to be handled.

f. FIFO Interface

The MRSP configuration includes an optional First-In-First-Out
(FIFO) buffer which bypasses CAP or host control to move data at high
Speed directly into Bulk Memory. This is actually a double buffered
device designed to accept data at the input source rate, and transfer it
at the output destination rate. In effect, it matches the MRSP to a

o

AFWAL-TR-83-1045

non-synchronous data source. The FIFO communicates directly with an
assigned input port in the IOC. Most FIFO operations are controlled by
a programmable read only memory (PROM), which is set to the users speci-
fications. However, some parameters, such as mode of operation and block
size can be loaded under program control. The FIFO memory consists of
two identical buffers, each 4096 words X 32 bits. While one memory is

‘being written, the other may be read (unloaded). This allows a continu-

ous input data stream and simultaneous transfer to the I0C. Each 32-bit
wide buffer is divided into four 8-bit bytes, and the user may pack the
incoming 8-bit bytes in any order desired.

g. Differential Address Generator

The MRSP configuration includes optional DAG hardware which is
capable of generating non-consecutive address sequences for Bulk Memory
and/or VAP data memory. This feature can potentially increase processing
efficiency for certain types of interpolation operations. In effect,
the desired address sequences would be generated directly by hardware
rather than computed by the program. The DAG can produce address
sequences in which the resampled vector is either linear or quadratic
relative to the initial reference. DAG outputs are sent to an Address
Offset Table (AOT) located in the IOC and/or to either or both of two
Pointer Tables (PT1l and PT2) located in the VAP. DAG operations are
controlled from a register file containing 32 words X 16 bits, which is
loaded by either the CAP or a host computer. Values from this file are
then used to initialize various sum, increment, offset, carry, and
compare registers within the DAG hardware. The derivation of DAG
register file values can be an involved process requiring much planning
on the part of the user, especially for second order sequences. The DAG
fs assigned to Channel #4 on the DMA Bus.

h. Console Intelligence Unit

The MRSP configuration includes a supplemental ONTEL OP-1
Intelligent Terminal, which serves as a Console Intelligence Unit. This
is a microprocessor based (INTEL 8080) unit which provides standard com-
puter console functions through a CRT/keyboard. A dual drive floppy
disk peripheral is included with this unit. The ONTEL can function as a

12

AFWAL -TR-83-1045

completely independent system, and is also capable of full interaction
with the CAP processor. It has its own floppy based operating system
which is called D0OS/80. The ONTEL CIU is most useful for dynamic
debugging of CAP programs. It can monitor and modify CAP registers and
memory, and can execute CAP programs in single step fashion. The ONTEL
can also save CAP programs on floppy disk. Additionally, it can load
CAP programs from the disk and execute them. It is also possible to use
the ONTEL CRT as a supplemental alphanumeric output display for normal
MRSP operations. The ONTEL is tied to the CAP through a unique CIU
interface.

i. RAMTEK Display System

The RAMTEK video display system serves as the primary output
device in the present MRSP configuration. [t consists of a RAMTEK Model
9351 Display Controller, a CONRAC 17-inch black and white television
monitor, and a manual joystick cursor controller. The system has
sufficient refresh memory to support an image size of up to 512 X 512
picture cells (pixels), with each pixel being represented by up to 8
bits of intensity data (256 grey levels). Any pixel in refresh memory
may be randomly accessed. The RAMTEK Controller has a comprehensive
instruction set which enables it to plot functions, generate text and
graphics symbols, and display image intensity data in a raster format.
The capability to load variable look-up tables, reverse display
polarity, blink the display, and generate a joystick controllable cursor
is also included. To control the system, unique RAMTEK instruction
codes are programmed as data words within a CAP assembly language
routine. The RAMTEK video display system communicates with the MRSP
through Channel #6 on the DMA Bus, and CAP Interrupt #6.

J. VAX 11/750 Host Computer

A Digital Equipment Corporation VAX 11/750 computer Eystem
serves as a host processor for the MRSP. The VAX is a 32-bit medium-
scale general purpose machine. It is not dedicated to the MRSP, and
supports several additional programs. The VAX has an extremely

13

Il AFWAL-TR-83-1045

comprehensive and flexible operating system (VAX/VMS), which is based on
virtual memory management techniques. In its role as host, the VAX
executes the MRSP support software package, and provides the resources
required to generate and load runnable binary CAP, VAP, and IOC modules.
The VAX is hardware linked to the MRSP through an MDB Corp. plug-

[compatable equivalent of a DEC DR-11B interface. It communicates with
the CAP through Channel #3 on the DMA Bus. |

T ' “""""""""""""lll!!!lllll-!l-!l---n--u--l||lll

' AFWAL-TR-83-1045

SECTION III

" MRSP SYSTEM SOFTWARE DESCRIPTION

1. GENERAL OVERVIEW

This section is included for reader continuity. It provides a top
level summary of the MRSP Support Software Package, which is the primary
user/software interface required for normal MRSP system operations. A
separate Westinghouse software package which provides a high level
language (FORTRAN) simulator for the VAP element of the MRSP is also
described. Finally, some directly applicable features of the host
processor operating system (VAX/VMS) are briefly highlighted. For a more
detailed description of software particulars, the reader is referred to
the MRSP and VAX system manuals.

2. SUPPORT SOFTWARE OVERVIEW [

The individual routines required to assemble, link, load, debug,
execute, and modify useful programs for the MRSP comprise an overall
system of modules called the MRSP Support Software Package. This is a
general purpose package written in a machine-independent higher level
language. It cannot be executed or run directly by the MRSP hardware,
but must reside in a separate host processor which supports that
particular language. A DEC VAX 11/750 system serves as host for this
particular MRSP configuration. The MRSP Support Package does not include
! . a text editor, which is required to generate intial source code programs
for the VAP, IOC, and CAP. An editor must be provided by the VAX host.
Additionally, some VAX resources are required to create the final binary
coded load module.

Generation of a runable program for the VAP, IOC, or CAP is a
multi-step process. It is accomplished from a standard keyboard/CRT
computer terminal supported by the VAX host processor. First, the user
A invokes one of the VAX text editors, and types the source program in the

0 assembly language for that particular unit. The VAP, IOC, and CAP each
have their own assembly language mneumonics. After the source program
has been written, the appropriate assembler is invoked. The assembler

AFWAL-TR-83-1045

creates a file in which the mneumonics and symbols used in the source
program are converted into numeric machine instruction codes and
addresses. Next, the assembler output file is operated on by a VAX-
specific command file called "BINGEN" (Binary Generator). BINGEN creates
still another file in which the assembler code is converted into a
loadable binary format. Finally, the loader itself is invoked, which
moves the runnable binary program module into the MRSP.

~ The BINGEN command file operates on assembled programs in a
particular ASCII-octal format. This format is generated directly by the |
VAP and IOC assemblers. However, the output from the CAP assembler is in .
an absolute binary format which BINGEN does not recognize. An
additional step is required to convert assembled CAP program files into §
the desired format. The utility which performs this conversion is called i
the CAP Translator. It is invoked prior to the BINGEN operation. All
three assemblers have the option of generating an additional list file,

which is printed in human-intelligible ASCII characters. This file !
contains the source mneumonics and symbols in tabular form. An adjacent z
column shows the equivalent machine operation codes and translated

symbolic addresses. An additional adjacent column indicates the memory

location in which each machine coded instruction and operand will be

stored when the program is eventually loaded. The list file is

particularly useful for program debugging purposes.

BINGEN is an interactive VAX-specific command file which uses VAX
resources to convert a file in ASCII-octal format into a loadable binary
image file. BINGEN prompts the user for the name of the unit to be
loaded (VAP, CAP, or I0C), and then for some specific parameter
definitions. The nominal values for these parameters are stored in a
separate default file. If the user desires the default values, he simply
types a carriage return in response to the prompt. BINGEN then requests
the name of the ASCII-octal format file which is to be converted. For
the actual binary conversion process, BINGEN invokes the VAX Macro
assembler and the VAX Compatibility Mode task-builder. Finally, after
the required processing has been accomplished, BINGEN asks for the name
of the loadable file to be generated.

16

AFWAL-TR-83-1045

Once an operational binary program file has been created in tae
host processor, the loader segment of the MRSP Support Software Package
is invoked. This segment provides the user with a method to physically
load a - unnable program into the MRSP. In addition to actually loading
programs, the loader has the ability to make specific load-time changes
to a module in accordance with a previously created edit file.

When a new operational program is first tested in the VAP, CAP, or
I0C, the probability that some subtle programming errors or “bugé" will
exist is quite high, especially if sophisticated data manipulations are
involved. For this reason, a Debugger module is available in the MRSP
Support package which enables the user to locate and correct programming
errors. The Debugger permits direct interactive access with the VAP,
CAP, IOC, or DAG. The user can examine and modify the contents of data
memories and internal register memories within the specified MRSP unit.
Additionally, he can set breakpoints, execute the program on a complete
or single step basis, and reset the processor. These operations are all
performed from a standard keyboard/CRT which is supported by the host
processor. In addition to its main function of debugging new programs,
the MRSP Debugger module has a second important purpose. It provides a
means to execute any program which has been loaded into the VAP, CAP, or
I0C. For this application, the Debugger is normally invoked immediately
after the loader. The operator then selects the desired MRSP uni* and
sends an EXECUTE command.

3. CAP SUPPORT PACKAGE

The CAP Support Package is a segment of the overall MRSP support
package. It provides a number of supplemental service routines unique to
programs written for the CAP, These routines include a File Manager, a
Linker, a Simulator, and a Deassembier.

The CAP File Manager is a general utility which has been designed
to maintain and keep track of CAP source and relocatable (binary-coded)
program files. It is useful for such operations as adding new code
segments to existing files, deleting files, copying files, or renaming
files.

17

AFWAL-TR-83-1045

The CAP Linker is a routine which collects independently assembled
relocatable program elements, and binds them into a single load module.
Undefined symbols within a particular relocatable elerent are resolved
through reference to externally defined symbols in the other relocatable
elements. This effectively enables communication between the l
independently assembled elements when the program is executing.

The CAP Simulator precisely duplicates the operational behavior of
the CAP Processor, and provides a variety of detailed outputs. In
operation, the simulator maintains a software replica of CAP memory
within the host processor. The program to be simulated is assembled in
the normal manner, just as it would be with the actual CAP. The output
of the simulator is a detailed sequential listing of all CAP instructions
| that were executed, and a dump of all programmable registers. The
printout also includes the actual execution time of each instruction, as
well as the total accumulated program execution time to that point. '

As one of the assembler options, the executable binary module can
be deassembled, producing as well as possible, an assembly language
s source listing of that program. However, this can only be done at
assembly time.

4. HOST I/0 DRIVER

The Host Input/Output Driver is one of the most useful entities in
the MRSP Support Package. It provides a software communications link
between the host processor and the MRSP. The Host I/0 Driver consists of
a number of separate modules which can perform such functions as the
following:

a. Assign a host [/0 channel to the MRSP.

b. Transmit data back and forth between a high level language
applications program running in the host and the MRSP.

c. Print I/0 status code messages.

d. Load CAP memory management registers.

e. Reset a specified MRSP unit, or execute a program in that unit.

18

¥

g A

e e

AFWAL-TR-83-1045

The major user interface module within the Host I/0 Driver package
is called PSPI0. This module may be linked to a high level language
applications program running in the host, and called as a subroutine.
When used as a subroutine, the PSPIO module requires 8 parameters. These
are detailed as follows:

a. Function - the actual operation that is to be performed on this
transfer, i.e., read, write, execute, or initialize.

b. Logical Unit Number - the assigned host processor I/0 channel
for this transfer.

c. Unit Descriptor - the name of a file that contains parameters
to identify the particular MRSP unit with which the transfer is to occur,
i.e., VAP, CAP, IOC, Bulk Memory, or DAG.

d. Starting Address - the absolute memory address within the
object MRSP unit at which the transfer is to begin.

e. Word Count - the actual number of words to be sent or received
on this transfer.

f. Buffer - the name of a memory array in the host processor from
which data is to be sent or received on this transfer.

g. Time Out Count - A parameter which determines how long the
host processor will wait for a response once a transfer has been
initiated. If no response is received within this interval, an error
message will be generated.

h. Status - a one-word code indicating either that the transfer
was completed normally or that an error occurred. If the transfer is not
completed normally, the code identifies the particular error.

PSPIO is extremely useful in situations where MRSP processing is
required to support a high level language applications program running in
the host processor. It effectively places the full computational power
of the MRSP at the disposal of the applications program on an interactive
basis. Some specific examples in this regard could include the
transmission of special function data directly to the DAG register file,
the transmission of weighting functions to VAP data memory for FFT

19

AFWAL-TR-83-1045

operations, or the transmission of interactive user inputs directly to
CAP memory for MRSP output interface processing.

5. VAP SIMULATOR

The VAP Simulator is a Westinghouse-developed package which
provides a high level language (FORTRAN) simulation of the Vector
Arithmetic Processor (VAP) element of the MRSP. It may be used to
support the development, analysis, and evaluation of VAP-specific
algorithms. Use of the simulation package requires knowledge of the
MRSP and its functions, particularly the interaction between the IOC and
the VAP. Specific knowledge of the VAP instruction set, and the meaning
of each instruction field is also required.

The VAP simulation package contains a set of FORTRAN subroutines
which simulate the most commonly used VAP instructions. This would
include the Fast Fourier Transform (FFT) instructions, the DETECT
instruction, and a repertoire of arithmetic instructions that perform
operations with complex numbers. Some logical and control instructions
are also included. Each simulated instruction is represented by a unique
subroutine which has the same name as the actual VAP instruction.
Control fields in the actual instruction are represented by subroutine
parameters in the simulated instruction. VAP memory is simulated by a
large COMMON storage block, which the calling FORTRAN program reserves in
the host processor memory. In the simulation package, the large COMMON
block is partitioned into 10 sub-blocks of 2048 integers. These sub-
blocks are further partitioned into pairs, each representing a complex
number (real and imaginary components). The 10 sub-blocks represent the
6 VAP data memories plus the two input buffers and the two output
buffers. Subroutines in the VAP Simulator package communicate with one
another through reference to the COMMON block.

To use the VAP Simulator, the analyst develops a main FORTRAN
calling program which reserves the COMMON block and defines the
algorithm that is to be implemented. Each VAP instruction in the
algorithm would be represented by a call to the appropriate subroutine.
Parameters passed to the subroutine would contain the same information as

20

AFWAL-TR-83-1045

the corresponding fields in the actual VAP instruction. The simulated
instructions are executed in exactly the same order as real instructions
in an actual VAP program. Since it is executing entirely within the
host processor, the VAP simulator is, of course, much slower than the
actual VAP processor. However, an algorithm implemented by the VAP
simulator should yield exactly the same results as it would in the
actual VAP. For this reason, the simulator is extremely useful for the
initial development of the VAP-oriented signal processing algorithms.

6. SYSTEM DIAGNOSTICS

The MRSP Support Package includes an extensive repertoire of
hardware diagnostic routines which verify proper operation of the
MRSP/host processor interface, as well as each individual hardware module
within the MRSP itself. The diagnostic package is organized into a
hierarchical structure, such that the highest level tests the MRSP/host
interface, the next highest level tests the major MRSP hardware units
(i.e., CAP, VAP, and I0C), and successively lower levels test individual
components within each major unit. At the lowest levels, each individual
instruction within the VAP, CAP, and IOC is exercised; and detailed
patterns ar 3jenerated to test each cell in the main data memories and
internal register memories. Any individual diagnostic routine at any
level may be executed as an independent module for selective test of a
particular hardware component. The diagnostics package is executed from
a standard keyboard/CRT terminal supported by the host processor.

7. HOST PROCESSOR OPERATING SYSTEM

From a practical standpoint, all user interactions with the MRSP
must necessarily include the host processor and its operating system. As
previously indicated, a VAX 11/750 serves as the primary host processor
to the MRSP for this effort. The VAX operating system (VAX/VMS) is '
extremely comprehensive, and its interactions with the MRSP Support
Software package are quite complex. For example, VAX/VMS supports the
computer terminals that MRSP system users employ to develop, load, and
debug programs. It provides text editors which are required for MRSP
source program development, and it supplies resources required for the
previously described BINGEN operation. Modules in .the Host [/0 Driver

21

|
|

i
I
!

] '
|

AFWAL-TR-83-1045

package depend on the invocation of various VAX System Service routines
to fulfill their function. One of the most useful features of VAX/VMS is
the Digital Command Language (DCL). This is a unique console language
that functions at the operating system level. DCL provides the ability
to generate command procedures, which in effect, are files of commands at
the operating system level. These files enable the VAX to automatically
execute a long string of system level commands that would ordinarily
require individual operator input. This capability can greatly
streamline MRSP system operations from a user standpoint. For example,
it will be recalled that the procedure to transform a CAP program from
ASCII source code to a loaded binary module involves successive
invocations of the CAP Assembler, CAP Translator, BINGEN, MRSP Loader,
and MRSP Debugger. Each of these invocations entails a number of
operating system level commands on the part of the user. The entire
process could be simplified by creating a DCL command procedure that
contains the required string of commands, including any parameters that
would be entered manually. Then the user need only specify the name of
the command procedure, and the whole sequence is executed automatically.
Command procedure files are especially helpful in situations where the
MRSP interacts with a number of high level language applications
programs running in the VAX. As an additional example, suppose that it
is desired to do some FFT processing on a large array of data, and then
move the results to a display system controlled by the CAP. To
accomplish this, one could first issue commands to load the operational
VAP, CAP, and IOC programs into the MRSP. This would be followed by a
command to execute a FORTRAN program that reads a magnetic tape and moves
the data to Bulk Memory. Another FORTRAN program would then be executed
which generates an FFT weighting function and moves it to VAP data
memory. Finally, commands would be issued to execute the individual VAP,
CAP, and IOC programs. If it were desired to also save the processed
data on magnetic tape, then an additional FORTRAN program would be
executed to accomplish this function. All of these commands could be
placed in a single DCL file, and automatically executed in sequence by
simply specifying the name of that file. Any parameters that would
ordinarily require manual entry can also be included in the command file.

AFWAL -TR-83-1045

SECTION IV

MRSP SYSTEM OPERATIONS

1. RAMTEK DISPLAY INTEGRATION

The video display system interfaced to the MRSP consists of a
RAMTEK Model 9351 Display Controller, and a CONRAC 17-inch black and
white television monitor. The RAMTEK controller includes a 512 X 512 X 8
bit digital refresh memory and a 2048 X 13 bit video look-up table. The
refresh memory permits the system to display up to 262, 144 individual
picture cells (pixels) on the monitor screen. Each pixel can be coded to
any of 256 different grey levels. The look-up table determines how each
individual pixel will be coded. Any desired mapping function (1linear,
logrithmatic, exponential, etc.) may be loaded into the look-up table
under program control. Since the refresh memory in this particular
system is only 8 bits deep, only 256 of the available 2048 Took-up table
locations would be used in practical applications. The RAMTEK unit
includes hardware to control an internally generated cursor symbol,
either under program control or manually be means of a joystick.
Additionally, the RAMTEK Controller includes circuitry to generate
a1phanume}ic characters and graphics (vectors). The CONRAC monitor has
been tuned and adjusted to match the RAMTEK controller. In most
references within this report, the MRSP display system will be
conveniently referred to as the "RAMTEK display” or simply as "the
RAMTEK". However, these references implicitly include the CONRAC
monitor.

The RAMTEK display system is interfaced to the MRSP through Channel
#6 on the DMA Channel Bus Controller. It operates through a CAP
program which controls all the required interrupt processing and]
"handshake" operations. Under normal implementation, the CAP program
performs some processing operation on the data, and then forwards it to
the RAMTEK for display. Every CAP program which uses the RAMTEK must
incorporate a series of RAMTEK instruction words. These instructions
are programmed as data words in the CAP program, while the actual data
to be displayed is represented as a CAP memory array.

23

AFWAL-TR-83-1045

The RAMTEK controller provides a repertoire of 20 basic instructions
which can be used to manipulate data presented on a CRT display. There
are 16 possible parameters through which the programmer can “"customize"
instructions executed by the RAMTEK. Not all parameters apply to all
instructions, and some of the parameters are not used in the Model 9351.
However, the system is designed for optimum flexibility, and the number
of possible instruction/parameter combinations is very large. As would
be expected, the usual price for flexibility of operation is complexity
of programming. Any RAMTEK operation requires a series of 16-bit
instruction words which precede the actual data to be displayed. These
words effectively constitute a unique RAMTEK "subprogram" within the CAP
program. The first word includes an 8-bit op-code field and several l
smaller fields which specify such factors as addressing mode, background
polarity, byte packing, and whether additive write is to be used. This
is followed by an operand flag word which indicates the presence or
absence of the 16 possible parameter operands. The operands appear in a
fixed sequence, and each bit in the flag word corresponds to an operand
in the same sequence. The actual number of words associated with each
parameter varies from 1 to 12, depending on the parameter. These words
di=ectly follow the flag word. The operand words are followed by a byte
count word, and finally by the data words themselves. The RAMTEK
instruction set and parameter formats are summarized in Figure 2 and 3.

From the above it is apparent that the programmer is literally
working at the bit level, and constantly referring to detailed manuals]
to derive the various op-codes, control fields, flag words, operands, -
and byte counts. Moreover, this process must be repeated for each CAP
program that communicates with the RAMTEK display. The RAMTEK display
integration effort can be summarized as an attempt to move some of the
more useful RAMTEK instructions to a higher level from which they could
be directly referenced by descriptive names. This would minimize the
need for bit level coding in each individual program, which is a tedious
process and highly prone to error.

AFWAL-TR-83-1045

oP- INSTRUCTION NA ‘€

CODE !

o LOAD HARD REGISTER

02 READ SOFT REGISTER ‘

03 LOAD AUXILIARY MEMORY |

04 ‘ READ AUXILIARY MEMORY

05 RESET

06 INITIALIZE

07 NO OPERATIONS

08 SET PARAMETER

09 ERASE

0A WRITE IMAGE

08 READ IMAGE

oc WRITE TEXT |

0D " WRITE RASTER i
; 3 WRITE VECTOR !
4 10 WRITE PLOT
[16 WRITE CURSOR STATE
| 17 READ CURSOR STATE

18 WRIVE KEYBOARD

19 ~ READ KEYBOARD

1A SENSE PERIPHERAL STATUS

Figure 2. Basic Ramtek Instruction Set

APMAL- TR-83-1045 *
(15114]13]12(11{10(9{8|7]6]5|413|2]1]0|
[op cooe [rx]ao[sx|re{or]oF |
OPERAND BIT ARGUMENT l OPERAND FLAG |
0 SUBCHANNELS [suscHANNELS MASK]
1 FOREGROUND [T FOREGROUND COLOR H|
2 SACKGROUL1D [sacxerounp coLor |
3 INOEX 1 X _ADDRESS
Y ADDRESS
s INDEX 2 X ADDRESS
Y ADDRESS
5 ORIGIN X ADORESS (MUT USED)
Y _ADDRESS
6 WINDOW START X ADDRESS
START ¥ ADDRESS
STOP X ADDRESS
STOP Y ADDRESS
7 SCAN | SCAN SEQUENCE |
8 DIMENSION FONT/SEGMENT WIDTH
FONT HEIGHT
9 SPACING HORTZONTAL SPACING
VERTICAL SPACING
10 SCALE | ¥ SCALE X SCALE |
n FUNCTION | NOT USED B
12 CONIC EQUATION — NOT USED
b NOT USED —
— NOT USED —
- NOT USED —
— NOT USED —
NOT USED —_
13 BASELINE [C__FILLED PLOT BASELINE |
14 SCROLL COUNT [NOT USED]
15 START POINT | X ADORESS |
[DATA BYTE COUNT]
DATA
LEGEND

IX ADDRESSING MODE (0 ABSOLUTE | INDEX | 2 INDEX 2 3 RELATIVE)

AD ADDITIVE WRITE (O REPLACEMENT 1 AODITIVE)

8K REVERSE BACKGROUND (O NORMAL BACKGROUND 1 REVERSED BACKGROUND)

RP REVERSE PACKING FLAG (0 LEFT BYTE FIRST 1 RIGHT BYTE FIRST)

OF OPERAND FLAG (U NO ARGUMENT OR FLAG WOKDS EXISTS 1 FLAGGED ARGUMENTS EXIST)
OF OATA FLAG (O NO DATA OR LENGTH WORD EXISTS 1| DATA BYTES

Figure 3. Instruction Parameter Fpmt

AFWAL-TR-83-1045

a. General Approach

In the normal MRSP software development environment, the most
frequently used RAMTEK instructions are those which write image, text,
and graphics data to the CRT display. Instructions which clear the
display, control the cursor, and load the auxiliary memory with a lookup
table are also very useful. One of the major technical objectives of
this effort was to integrate the RAMTEK display from a software
standpoint, and make it easier to use from an operator standpoint. This
was accomplished primarily through the features of the VAX VMS Qperating
System, and the PSPIO Utility Routines in the MRSP support package. The
VAX Operating System allows the programmer to create command procedure
files. Such files enable the VAX to execute a long series of commands at
the operating system level that would ordinarily require individual
operator input. Once a command file has been created, the operator need
only specify the name of the file and the VAX does the rest. The PSPIO
utility also has some handy features. One of the most useful is to
allow a VAX FORTRAN program to directly and independently send data to
any desired location in CAP memory. It also enables a VAX FORTRAN
program to command the execution of an assembly language program loaded
into VAP, CAP, or 10C.

The approach used in integrating the RAMTEK software was to
write separate VAX command files for individually implementing the most
useful RAMTEK instructions. For example, VAX command files named WVECTOR
and WTEXT were written to impiement tne basic RAMTEK WRITE VECTOR and
WRITE TEXT instructions respectively. Some of the command files are
interactive inthat they dynamically request operator inputs directly
from the keyboard terminal at run time. Others require previously
created data files, while still others execute directly without operator
inputs or data files. A1l of these command files have one essential
feature. They convert the bit level RAMTEK operand codes to higher level
mneumonics which can be entered directly from the keyboard of an
ordinary computer terminal.

27

AFWAL -TR-83-1045

Each VAX command file representing a RAMTEK instruction is designed
to operate as an independent module. In general, these files perform
five basic functions, which are summarized below:

(1) Accept interactive operator parameter inputs directly
from the keyboard terminal and store in a temporary data file.

(2) Load a CAP assembly language program which incorporates
the bit level codes of the desired RAMTEK instruction, and also reserves
storage for parameter data.

(3) Run a VAX FORTRAN program (incorporating the PSPIO
utility) which processes the interactive parameter data and sends it
directly to the specially reserved locations in CAP memory.

(4) Execute the CAP program which now has all required
parameter data. This is actually accomplished by a second FORTRAN
program incorporating the PSPIO utility.

(5) Perform "housekeeping® functions, including the deletion
of all useless temporary and intermediate data files.

b. Command File Descriptions

The following VAX command files were written during the course
of this effort:

(1) WTEXT - this file implements the RAMTEK WRITE TEXT
instruction to place alpha-numeric characters at an operator selectable
starting point on the CRT display.

(2) WVECTOR -~ this file implements the RAMTEK WRITE VECTOR
instruction to draw vectors at operator selected endpoints on the CRT
display.

(3) WPLOT - this file implements the RAMTEK WRITE PLOT
instruction. It scales and plots any 512 point function on the CRT
display.

(4) "WLOOKUP - this file implements the RAMTEK LOAC AUXILIARY
MEMORY instruction. It loads any 256 point lookup table into the RAMTEK
Display Controller.

|
|
;

AFWAL -TR-83-1045

- (5) WIMAGEU - this file implements the RAMTEK WRITE IMAGE
instruction. It scales and displays a 512 X 512 point image from the
upper 16 bits of MRSP bulk memory.

(6) WIMAGEL - this file implements the RAMTEK WRITE IMAGE
in§truct10n. It scales and displays a 512 X 512 point image from the
Tower 16 bits of MRSP bulk memory.

(7) WCURSOR - this file implements the RAMTEK READ CURSOR,
WRITE CURSOR, and SENSE PERIPHERAL instructions. It places a crosshair.,
cursor on the CRT display which is manually controllable from a
Joystick. Cursor coordinates are continuously updated and presented on
the supplemental ONTEL display.

(8) RAMCLEAR - this file sends a MASTER CLEAR instruction to
the RAMTEK Controller and completely erases the CRT display. The lookup
table is not affected.

(9) NEGATE - this file loads a negative lookup table into the
RAMTEK Controller, and changes the polarity of any vector and text data
currently displayed.

(aj WTEXT

The RAMTEK WRITE TEXT instruction reads ASCII
character codes from the host and generates the corresponding text
characters for display. Each character is written into a rectangular
patch of 9 pixels high by 7 pixels wide. Figure 4 shows the available
characters and the font size. Use of this instruction requires that
ASCII characters be sequentially packed in 8-bit bytes. Each 16-bit data
word sent to the RAMTEK would thus contain two characters. These data
words are preceded by a 16-bit flag word containing the byte count, i.e.,
the number of characters in the message to be displayed. The START
POINT parameter is used to specify the starting point of the message.

To make the WRITE TEXT instruction easier to use,
the WTEXT command file was written. This file enables the user to input
text data directly from the keyboard of his terminal, or at his option,
to display an alpha-numeric message directly from a previously created

29

AFWAL-TR-83-1045

HIH
11Tl

JERBAE
HHH
11T

1T
JI11T

-1 11

58 58

Figure 4. Standard Text Character Fonts

30

AFWAL-TR-83-1045

data file. To enter a message from the keyboard the user simply types @
WTEST. Assuming that the user is working from a standard CRT computer
terminal, a prompt appears on the screen requesting the X and Y starting
coordinates of the alpha-numeric message. These are entered by the user,
each followed by a carriage return. A prompt then appears requesting a
message directly from the terminal keyboard. The user enters the desired
characters and concludes with a carriage return. At this point the
RAMTEK, under control of the CAP, displays the message at the desired
locationon the CRT screen. A prompt also appears on the user's terminal
requesting a "YES" or "NO" answer to the question of whether the user
wants to save the message in a data file. [f "YES" is selected, a
follow-up prompt requests the name of the data file to be created; and
the internal file containing the message is automatically given the
desired name. I[f the user does not wish to save the text he types a

"NO" in response to the prompt, and the internal text file is
automatically deleted. If the user wishes to display a message from a
previously created data file he enters @ WTEXT FILE-NAME, where "FILE-
NAME" is the name of data file containing text and location data. No
terminal prompts are generated in this case. The message from the file
is sent directly to the RAMTEK and displayed on the CRT screen.

The WTEXT command file uses the VAX Digital Command Langquage (DCL)
to generate the interactive inputs from the operator. These are stored
in an intermediate data file. A VAX FORTRAN program is then executed
which reads the intermediate file, processes the text data, and sends it
to CAP memory VIA the PSPIQ utility. Next a CAP assembly language
program which moves the data to the RAMTEK is loaded. This CAP program
is executed by a VAX FORTRAN routine utilizing PSPIQ. Finally, the last
task of WTEXT is to dispose of the intermediate data file. If "YES" was
selected in response to the save gquestion, the intermediate file is
given the name selected by the user, otherwise it is automatically
deleted. If WTEXT was operating on a previously created data file, that
file is preserved.

AFWAL -TR-83-1045

(b) WVECTOR

The RAMTEK WRITE VECTOR instruction draws a
_continuous straight line vector between a starting point and a specified
end-point.- [f more than one vector end-point is specified, then
contiguous straight lines will be drawn between the points. It is not
possible to draw more than one vector with the same starting point in
the same WRITE VECTOR instruction. Multiple instructions must be used
if more than one vector is to proceed from the same point. However, it
is possible to draw a continuous closed figure which returns to the
original starting point with only one instruction. It is also possible
to retrace all or part of a previously drawn vector within the same
instruction. Therefore, in practice, multiple instructions would only
be required in cases where there is a discontinuity (open space) between
the vectors to be drawn. Use of this instruction requires the X and Y
coordinate of an end-point to be stored in separate 16-bit data words.
Thus each end-point to be specified requires two 16-bit words. These
data words are preceded by a 16-bit flag word containing the byte count,
i.e., the total number of 8-bit bytes of data to be sent to RAMTEK. The
byte count is 4 times the number of end-points specified. The start
point may be either the Current Operating Point (COP) from the previous j
instruction, or a new starting point specified by the START POINT
parameter.

To make the WRITE VECTOR instruction easier to use, an interactive
command file was written for the VAX called WVECTOR. This file enables
the user to input vector end-points directly from the keyboard of his
terminal, or at his option, to draw vectors from end-points stored in a
previously created data file. To enter vector end-points from the
keyboard, the user simply types @ WVECTOR. Assuming that the user is
working from a standard CRT computer terminal, a prompt appears on the
screen requesting the X and Y coordinates of vector end-points. The X
and Y coordinates of each end-point to be specified are entered in
pairs, separated by a comma and terminated with a carriage return. The
prompt reappears after each pair of coordinates has been entered. When
all desired end-points have been entered, the user types "END" in
response to the prompt. The RAMTEK, under control of the CAP, then
draws the specified vectors on the CRT screen. At the same time a

32

AFWAL-TR-83-1045

prompt appears on the user's terminal requesting a “"YES" or “NO* answer
to the question of whether the user wants to save the end-points he has
just entered in a data file. If “YES" is selected, a follow-up prompt
requests the name of the data file to be created; and the internal file
containing the endpoints is given the desired name. If the user does
not wish to save the data he types "NO" in response to the prompt, and
the internal file is automatically deleted. If the user wishes to draw
vectors from a previously created data file he enters @ WVECTOR FILENAME
where “FILENAME" is the name of data file containing vector end-points.
No terminal prompts are generated in this case. The end-point data from
the file is sent directly to the RAMTEK and displayed on the CRT screen.

The WVECTOR command file uses the VAX Digital Command Language to
generate the interactive inputs from the operator. These are stored in
an intermediate data file. A VAX FORTRAN program is then executed which
reads the intermediate file, processes the vector data, and sends it to
CAP memory VIA the PSPIO utility. Next a CAP assembly language program
which moves the data to the RAMTEK is loaded. This CAP program is
executed by a VAX FORTRAN routine using PSPIO. Finally the last task of
WVECTOR is to dispose of the intermediate data file. If "YES" was
selected in response to the save question, the intermediate file is
given the name selected by the user, otherwise it is automatically
deleted. If WVECTOR was operating on a previously created data file,
that file is preserved.

(c) WPLOT

The RAMTEK WRITE PLOT instruction generates plot
segments for each 16-bit word present in the instruction data stream,
and automatically updates the current operating point after each segment
is generated. This instruction is very flexible, and considerable
latitude is available to the programmer as to the orientation, size,
height, and spacing of the generated plot. There is also a baseline
parameter through which the programmer can select either a line plot or
a filled area plot.

33

AFWAL-TR-83-1045

To.make the WRITE PLOT instruction easier to use at a higher level,
a VAX command file called WPLOT was written. This file uses pre-defined
values for several of the parameters associated with the WRITE PLOT
instruction. A 512 point horizontal baseline was chosen, to be located
across the center of the RAMTEK screen. This allows an equal number of
pixels above and below the baseline to accommodate plot segments. The
filled area baseline option was chosen, and plot segments are to be drawn
from left to right. The programmer is responsible for providing some
form of relative scaling. For this application the baseline was defined
as relative zero. Plot segments with positive values should then fall
above the baseline, and those with negative values should fall below it.
The WPLOT command file operates on a previously created FORTRAN-
formatted data file containing any 512 point function that the user
wishes to plot on the RAMTEK display. Scaling occurs automatically. A
background grid is drawn along with the plot. This grid defines a total
plot area of 500 vertical pixels by 512 horizontal pixels. Each grid
block is 50 pixels high by 64 pixels long. There are 5 blocks above and
below the baseline in the vertical dimension, and 8 blocks along the
baseline in the horizontal dimension. An alpha-numeric readout also
appears at the bottom of the screen which indicates the maximum absolute
value of the plotted function in either the positive or negative
direction, whichever is greater. Scaling factors are computed such that
the maximum absolute value in either the positive or negative direction
is always a full scale deflection. Each grid block in the vertical
direction, above or below the baseline would then represent one fifth of
the maximum absolute value. Thus it is easy to evaluate or assess
relative maxima or minima at a glance for any plot. To use the WPLOT
command file the operator types @ WPLOT FILENAME, where "FILENAME" is
the name of a data file containing the 512 point function to be plotted.
No prompts appear at the operator's terminal, and the desired plot,
along with the grid overlay and alpha-numeric annotation appear
immediaté]y on the RAMTEK screen. The only restriction on the FORTRAN
data-file containing the function is that each point must be a l6-bit
integer word.

34

S o At ettt A

I Lot A A e e st o i

AFWAL -TR-83-1045

The WPLOT command file executes a VAX FORTRAN program which
computes scaling factors, generates end-points for the grid overlay, and
generates ASCII character data for the alpha-numeric annotation. This
data is then sent to CAP memory VIA the PSPIO utility. A CAP assembly
language program is then loaded which utilizes the WRITE PLOT, WRITE
VECTOR, and WRITE TEXT, instructions, along with the various coded
parameters, to send all the required data to the RAMTEK screen. The CAP
program is executed through a command from a separate FORTRAN routine
incorporating the PSPIO utility.

(d) WIMAGEU and WIMAGEL

The RAMTEK WRITE IMAGE instruction accepts user-
defined coordinates which specify a rectangular area of the screen,
followed by a data stream containing the actual image pixel elements to
be written. The position of a particular pixel in the data stream
determines the screen address, and the intensity of that particular
pixel is determined by a pre-loaded Video Look-Up Table (VLT). An 8-bit
datum could represent up to 256 different intensity levels or "shades of

"grey". A single WRITE IMAGE instructio. can transmit up to 32768 words

to refresh memory. However, since the refresh memory for a 512 X 512
pixel display contains 262, 144 words, many WRITE IMAGE instructions are
required to completely fill the CRT screen with image data. Use of the
WRITE IMAGE instruction regquires that each data element to be sent to
the refresh memory be stored in a 16-bit CAP memory word. However, only
the lower 8 bits of each word will actually be transmitted to refresh
memory.

To provide a practical high level implementation for the
RAMTEK WRITE IMAGE instruction, it is assumed that intensity data for a
512 X 512 pixel image is already resident in the MRSP Bulk Memory; and
that the user is looking for an easy way to display it on the RAMTEK
screen. As previously indicated, a 512 X 512 pixel image would require
a block of Bulk Memory storage containing 262, 144 words. However,
since the Bulk Memory is composed of 32-bit words, it would actually be
possible to store two 512 X 512 pixel images in the same memory block.
One image could reside in the upper 16 bits, and the other in the lower

35

AFWAL-TR-83-1045

16 bits. Based on these assumptions, two command files were written for
the VAX called WIMAGEU and WIMAGEL. Each of these files writes a
complete 512 X 512 pixel image from MRSP Bulk Memory directly to the
RAMTEK display screen. WIMAGEU assumes that the image is resident in the
upper 16 bits of Bulk Memory, while WIMAGEL assumes that it is resident
in the lower 16 bits. To use these files from a standard computer
terminal the operator simply enters @ WIMAGEU or @ WIMAGEL, depending
upon what image he wishes to display. No prompts appear on the user's
terminal, and the desired image is immediately transmitted to the RAMTEK
screen.

The WIMAGEU and WIMAGEL command files load and execute a CAP
assembly language program and an [0C assembly language program. The CAP
program inputs image data from the Bulk Memory in blocks of 512 pixels,
and scales it to insure that no pixel has a value greater than 255.

This is the maximum intensity level that can be displayed on the RAMTEK
CRT. Since the required scaling factor depends on the maximum intensity
value present in the image, the entire 512 X 512 image must be searched
prior to display. The CAP computes the scaling factor and inputs the
image a second time in blocks of 512 pixels. It then implements the
WRITE IMAGE instruction to send each block to the RAMTEK. A 512 pixel
block represents one "line" of data on the RAMTEK screen. This process
is repeated 512 times to generate the complete image. The IOC program
moves image data from Bulk Memory to CAP memory in blocks of 512 pixels.
Both the WIMAGEU and WIMAGEL command files load the same CAP program.
However, different [OC programs are loaded, depending upon whether the
image is to come from the upper or lower 16 bits of Bulk Memory. The
CAP and IOC assembly language programs are initially executed by
commands from a FORTRAN routine incorporating the PSPIO utility.

(e) WLOOKUP

A1l image data transmitted to the refresh memory VIA
the RAMTEK WRITE IMAGE instruction is mapped through a Video Look-Up
Table (VLT) prior to actual CRT display. The VLT defines the functional
correspondence between data values stored in refresh memory and the
actual grey scale intensity that is generated for each pixel. Use of a

36

4
L
!
'..

AFWAL -TR-83-1045

look-up table enables the user to mdodify a stored image in a predictable
manner, such as enhancing certain intensity levels, suppressing others,
etc. The VLT is physically located in the RAMTEK Controller and consists
of 2048 words, each 13 bits in length. As a physical device, the VLT
has been flexibly designed to serve a variety of possible refresh
memory/display configurations. The specific configuration used for the
MRSP is based on a refresh memory size of 512 X 512 X 8 bits, which
1imits stored values to the integer range of 0-255. With this
limitation, only the first 256 locations in the VLT have any practical
significance, and values stored at higher locations are effectively
ignored. The RAMTEK LOAD AUXILIARY MEMORY instruction is used to
transmit values to the VLT. The Controller treats the VLT as an
extension of refresh memory, and has assigned it an address of 8000
(hexadecimal). To use the LOAD AUXILIARY MEMORY instruction, the
programmer follows the coded instruction with the hexadecimal address of
the VLT, and then a 16-bit word containing the byte count, i.e., twice
the actual number of values to be loaded into the VLT. This sequence is
then followed by the actual values themselves. Intensity values
generated by any desired function (1linear, exponential, logrithmatic,
etc.) may be loaded into the VLT. In a practical sedse, the values
stored in refresh memory can actually be viewed as look-up table
addresses. For each pixel to be displayed the RAMTEK Controller will
access a specific location in refresh memory, which necessarily contains
some integer number in the range 0-255. This number is then used as a
vector to the VLT. Whatever value is stored at that location in the VLT
becomes the actual grey scale intensity mapped on the CRT. If a
straight linear function is loaded into the VLT (i.e., zero is stored at
Tocation zero, one is stored at location one, etc.) then the intensity
values stored in refresh memory will be exactly reproduced on the CRT
screen. If any other function is loaded into the VLT, some or all of the
values in refresh memory will be modified prior to display. If no
function is loaded (i.e., all zeros in the VLT) then the entire screen
will remain black (dark) regardless of the values in refresh memory.

To provide a practical high level implementation of the RAMTEK
video look-up tablie, a VAX command file called WLOOKUP was written. This

command file operates on a previously created FORTRAN-formatted data

37

e e et 7o A g o PN A Rl a7 " A 1 12147 L S En

AFWAL-TR-83-1045

file contaiﬁing any 256 point function that the user wishes to load. To
execute the command file from a standard computer terminal the user
simply types @ WLOOKUP FILENAME, where "FILENAME" is the name of a 256
! point data file containing the desired function. This causes the video
: look-up table in the RAMTEK Controller to be directly loaded from the
data file. No prompts appear at the user's terminal, and the data file
is preserved.

The WLOOKUP command file executes a VAX FORTRAN program which reads
§ the specified data file and sends the values directly to CAP memory VIA
the PSPI0 utility. A CAP assembly language program is then loaded which
utilizes the RAMTEK LOAD AUXILIARY MEMORY instruction to send the data to
the look-up table. The CAP program is initially executed by a command
4 from a FORTRAN program incorporating the PSPIO utility.

(f) WCURSOR

The RAMTEK cursor appears on the display screen as a
] cross with the center element missing. It is located within a 14 X 14
pixel block, and may be positioned anywhere on the screen by means of a
manual joystick control. Pertinent RAMTEK instructions relating to
cursor operation are WRITE CURSOR STATE, READ CURSOR STATUS, and SENSE
PERIPHERAL STATUS. These instructions allow the programmer to
respectively generate the cursor at any desired point on the screen, read
cursor position, and sense cursor status. Use of these instructions at
the bit level is quite complex since the programmer must set a prefetch
bit prior to reading cursor status or position, and then clear it before
sending the next instruction. The prefetch bit controls the direction of
transfer on the RAMTEK interface. Once it has been generated
’ (initialized), the cursor can be moved to any location by means of the
' Jjoystick. The joystick provides two modes of operation - TRACK and
ENTER. In the TRACK mode, host processor interrupts are'continuous1y
generated as the cursor is being moved. This enables a program running
in the host processor to dynamically monitor or "track" cursor status and
] position. In the ENTER mode, interrupts are only generated when the
Joystick operator depresses a momentary action switch., Each interrupt
generated in this manner enables the host processor to monitor cursor

‘ 38

| s e s it P -

AFWAL-TR-83-1045

status and position. In the MRSP configuration, the RAMTEK host
processor is the CAP; and an assembly language program running in the

CAP continuously monitors cursor status. When an interrupt is generated
in either the joystick TRACK or ENTER mode, the current cursor
coordinates are read, converted to ASCII characters, and sent to the
supplemental ONTEL display. An alpha-numeric message is also generated
which indicates whether the coordinates were generated in the TRACK or
ENTER mode.

To provide a practical high level implementation of the RAMTEK
cursor, a VAX command file called WCURSOR was written. This file enables
the user to initialize the cursor directly from the keyboard of a
standard computer terminal. To execute this file, the user simply types '
@ WCURSOR. A message then appears on the user's terminal reminding
him to power up the supplemental ONTEL display and put it in the EXECUTE
mode. When this has been accomplished the user types a carriage return.
The cursor then appears near the center of the RAMTEK screen, and is
ready for manipulation by the joystick. In the joystick TRACK Mode, X F
and Y position coordinates will be continuously displayed on the ONTEL
screen as the cursor is moved. In the ENTER mode, X and Y position
coordinates will be sent to the ONTEL each time the user depresses the
momentary action switch. .

The WCURSOR command file loads the CAP assembly language program
that monitors cursor status and position. This program utiiizes the
RAMTEK WRITE CURSOR STATE instructii» to initially generate the cursor,
and then implements the READ CURSOR STATUS AND SENSE PERIPHERAL STATUS
instructions in a continuous loop. The CAP program is initially executed
by a command from a FORTRAN routine utilizing the PSPI0 utility. s

(g) RAMCLEAR

The RAMCLEAR command file clears the RAMTEK CRT
screen. To use this file the operator enters @ RAMCLEAR from the
keyboard of a standard computer terminal. No prompts are generated at
the user's terminal, and the RAMTEK CRT screen is immediately cleared.
RAMCLEAR loads a CAP assembly language program which sends a MASTER

39

AFWAL-TR-83-1045

CLEAR to the RAMTEK Controller. The CAP program is executed by a command
from a VAX FORTRAN routine incorporating the PSPIQ utility.

(h) NEGATE

The NEGATE command file can be used to change the
polarity of vector and text graphics currently on the RAMTEK screen. In
normal operation white graphics are displayed on a dark background. The
NEGATE command file will reverse the polarity of background and graphics
so that dark graphics are displayed on a light background. To use this
file the operator enters @ NEGATE from the keyboard of a standard
computer terminal. No prompts are generated at the user's terminal, and
polarity reversal occurs immediately with regard to the currently
displayed graphics. The NEGATE command file loads a CAP assembly
language program which sends a value of 255 (hexidecimal FF) to the
first location of the RAMTEK video look-up table. This location
" controls the polarity of displayed graphics. The CAP program is executed
by a command from a VAX FORTRAN routine incorporating the PSPIO utility.

c. Summary

The VAX command files described in the previous sections
represent a high level implementation of the basic bit-level RAMTEK
instruction set. They are easy to use, and can be executed from the
keyboard of a standard computer terminal. Each file is designed to
operate an an independent m&dule, and the user can execute them as
required in any sequence. If, for example, the user wishes to analyze a
variety of look-up table enhancements on an image stored in bulk memory,
he can successively invoke the WLOOKUP and WIMAGE command files. Data
file inputs for WLOOKUP are easily created with VAX FORTRAN. Similarly,
it is a straightforward matter to overlay graphics and/or a cursor on a
displayed image using the WTEXT, WVECTOR and WCURSOR command files. The
WPLOT command file is especially handy for plotting functions in many
types of analysis work. Normally the original analysis routines are
written in VAX FORTRAN, and only a few additional statments are required
to save the results in data files. These functions can then be plotted
on the RAMTEK display with a simple invocation of the WPLOT command file.
Finally, the RAMCLEAR file is included as a matter of convenience. It

40

AFWAL-TR-83-1045

enables the display to be clear:d by a simple keyboard command. However,
the same function could be accomplished by walking over to the display
and depressing the MASTER CLEAR switch.

2. DEMONSTRATION PROGRAM

To demonstrate the signal processing capabilities of the MRSP as a
complete system, a two-dimensional Fast Fourier Transform (FFT)
processing operation was developed. The FFT was selected because it can
be directly related to many practical signal processing applications.
For example, one approach to generating very high resolution spatial
radar images utilizes FFT processing in two dimensions (range and
azimuth) to perform pulse compression and doppler phase compression
respectively. FFT's are also useful in spectrum analysis operations to
? t specify the response characteristics of various filtering functions.

The demonstration program utilized all components of the MRSP
system. Actual two-dimensional FFT computations were performed by the
VAP, The CAP provided data scaling and control of the output display
system, which was used to verify final results. The general purpose host
computer was used to generate the initial input function data, and also
the sine/cosine coefficient table required for FFT computations. The I0C
provided control of the bulk memory, a multi-faceted task which included
the acceptance of initial input data from the host, the transmission of
- intermediate data to the VAP, and the transmission of final output data
to the CAP and RAMTEK.

Two versions of the two-dimensional FFT were written. The first
version was a 16 X 16 point transform. This was later expanded to a 512
X 512 point transform when the final program was written. The program
structure is esentially identical for both versions. Only some minor
coding changes are required to modify instruction parameters which
designate the number of points on which to operate. One advantage of
initially working with a 16 X 16 point transform is that only 256 data
memory locations are required. This enables the entire data memory to be
easily printed on a a single sheet of paper or displayed on the terminal
screen for a quick inspection during program development. By contrast,

41

AFWAL-TR-83-1045

a 512 X 512 peint transform requires 262, 144 memory locations, and only
small portions of it can be displayed and inspected in a single glance.

The demonstration program generated a three-dimensional pulse of
constant amplitude as the input function. The two-dimensional Fourier
Transformation of this function should be a three-dimensional Sine X/X
surface, with the main lobe positioned in the center of the surface. To
verify the theoretical results, the output was presented in intensity
modulated form on a 512 X 512 picture cell (pixal) cathode ray tube
(CRT) monitor.

a. Function Description

A two-dimensional FFT is developed from a series of one-
dimensional FFT's. A one dimensional FFT is a function of one variable,
and it operates on an input function of N points, where N is the FFT
length. N is usually specified as a power of 2. Figure 5(a) is a pulse
of constant amplitude (A), which is used as an input function to a one-
dimensional FFT. The pulse width is X points, and the total input
function length is N points. When a discrete one-dimensional FFT and
detect operation is performed aon a pulse of constant amplitude, the
result is a Sine X/X function (Reference 1). This is shown in Figure
5(b). The number of sidelobes is determined both by the number of
samples in the pulse and the total number of samples in the FFT. Figure
6 shows the results for a pulse width of 16 samples and a total FFT
length of 512 samples.

In a strict mathematical sense, a one-dimensional FFT is a
function of only one variable. However, two real dimensions (amplitude
and length) are required to describe the input function (pulse) on which
the one-dimensional FFT is to operate. Likewise, two dimensions are
required to describe the Sine X/X output. For computer implementation,
it is convenient to represent the input function length dimension with a
one-dimensional memory array of N locations. The other real dimension
(amplitude) can then be determined by assigning values to various
locations in the array. Any desired input function to a one-dimensional
FFT can be described in this way. For the pulse of Figure 6, the first
16 array location have a value of A, and the remaining 496 locations
have a value of zero.

42

WAOJSURA] JLILANOJ pue uOLIdoUNg ISINd ¥ "G aunbyy

N\

(a)

X ¢—

(°)

(x)4

d1ed wdojsues] 43gano4 pajdwes -9 aanby4
3Sv8 AININDIYS 031dWVS
Zis 14 141 0ze 952 261 821 ¥9 0
_ ok "
XV = C
IANLINAWY AV3Id ﬁ
ISVE IWIL 03VdWVS
rA Y 14 ¥8¢e 02¢ 96¢ c6l -7 1 2] 0
< t + + t ' + ' t
(T2}
b4
o
3
)
& v
-
<
[rd
L= 4

5270

0s°0

SL°0

IANALITAWY JATLVIIY

3ANLIVdWY

, _“m

AFWAL-TR-83-1045

A one-dimensional FFT can be expanded to a two-dimensional FFT by
making it a function of two variables. In this case, the input function
on which the FFT is to operate would be described by three real
dimensions (length, width, and amplitude). The two-dimensional pulse of
Figure 6 would then become a three-dimensional pulse. This is
represented by the rectangular solid of Figure 7(a). A three dimensional @
function can be described by a two-dimensional computer memory array of
N X N locations to represent length and width. The amplitude dimension
is then represented by assigning values to the various array locations.

A two-dimensional FFT is implemented in two steps, each consisting
of a series of one-dimensional FFT's. The first step is to compute N
separate one-dimensional FFT's along one axis of the input functicn array
(i.e., either the rows or the columns). The second step is to compute N
more separate FFT's along the other dimension of the input array. All
values in the input array are complex, i.e., they have a real component
and an imaginary component. Each of the FFT's in the second step is
followed by a detect operation (+/ REALS + IMAGINARYS) to arrive at the
final result. For this demonstration program, the input function was a
three-dimensional pulse of constant amplitude, and the desired output
was a three-dimensional Sine X/X function similar to that of Figure
7(b).

b. IMPLEMENTATION

The basic VAP FFT instruction is a one-dimensional operation
of N points. For the demonstration program, N is chosen to be 512
points. This is purely a matter of convenience, and is based on the fact
that the available RAMTEK display system is configured for 512 X 512
pixels. The VAP can handle any FFT length up to 4096 points. The two-
dimensional FFT will be developed in two steps as previously indicated.
Each step consists of 512 one-dimensional FFT's of 512 points each.

The input function is a three-dimensional pulse of constant
amplitude. It is represented in computer memory by a 512 X 512 element
] complex array. The imaginary component of all elements in the array is
set to zero. The real component for a 16 X 16 block of elements in the

; 45

suojjejuasaaday |euojsudwyg-aaay) "/ aanbid

133 TYNOISNIWIO-IIYKL
404 NOILVINISIdIY ALISNILNI

ﬁ 4

(A *n)) (€ 'x)f

144 TYNOISNIWIG-33YHL 35Ind TYNOISN3IWIG-IYHL

AFWAL-TR-83-1045

P il

AFWAL-TR-83-1045

near corner of the array (i.e., rows 1-16 and columns 1-16) is set to a
constant amplitude value of 1400. This function is generated in the VAX
11/750 host computer and transmitted to bulk memory via IOC Port #4. A
262, 144 element block of bulk memory is reserved for this purpose in the
I0C program. The VAX then generates the 512 point sine/cosine
coefficient table required for FFT computations. This is a complex data
table in which the cosine coefficients constitute the real component and
the sine coefficients constitute the imaginary component. The table is
transmitted directly to VAP Data Memory #5 via the PSPIO support
software utility routine. At this point the FFT operations commence.
The I0C transmits a 512 element block of data to the VAP via IOC Port
#5. The VAP computes a 512 point one-dimensional FFT and returns the
results to the same locations in bulk memory via Port #). The bulk
memory address counter is appropriately updated and the next 512 element
block of data is sent to the VAP, processed, and returned. This
sequence continues, with the I0C “ping-ponging" between Port #5 and Port
#0 until all 512 blocks of 512 elements each have been operated on by
the VAP. The first step of the two-dimensional FFT operation has then
been completed. Al1 512 rows of the input array have been processed.
At this point a "corner turn" is implemented in the IOC. The second step
of the operation requires all 512 columns to be processed in the same
manner as the rows. The "corner turn" involves the generation of a
different sequence of bulk memory addresses. Instead of accessing the
data in sequential blocks of 512 as was done for the rows, the bulk
memory address counter is now incremented by 512 after each memory
access. When a complete column has been accessed, the memory address
counter is decremented by 262, 144 and then incremented by one. This
sequence continues until all 512 columns have been operated on by the
VAP. The I0C "ping-pongs" between Port #5 and Port #0 as before. At
this point a complete two-dimensional FFT has been computed. However, to
derive the desired output (three-dimensional Sine X/X function), a
detect operation is required after the second group of FFT's. This
operation is performed in the VAP using the "Detect" instruction. The
Detect instruction 1§Q1ements a 'eory fast approximation of

REAL® + IMAGINARYS. This operation could be performed in a separate
process after the FFT's by moving the transformed data from bulk memory
to VAP and then back to bulk memory again via Port #5 and Port #0 as

47

AFWAL-TR-83-1045

before. However, it is more efficient to combine the detect operation il
with the second set of FFT's. In this implementation, each of the 512
column FFT's is followed by a detect operation before the data is ﬁ
returned to bulk memory. This was the approach dsed in the demonstration
program.)

After the FFT/Detect operations have been completed, the IOC moves
the data from bulk memory to CAP for presentation on the RAMTEK display
system. This is accomplished sequentially in batches of 512 elements via
IOC Port #3. The CAP scales each group of data as it is received and !
transmits it to the display CRT as a 512 element "1ine". When all 512 '
lines have been transmitted, the display screen is filled. The screen
contains 262, 144 pixels, so there is a one-to-one correspondence with
the transformed data in bulk memory. In addition to data scaling, the
CAP has some other responsibilities. It generates and transmits the
grey scale Tookup table to the RAMTEK display system. It also processes
the interrupts and controls the "handshaking" operations required to
increment the RAMTEK line counter. The lookup table determines the
intensity modulation on the RAMTEK display. For this demonstration
program, a linear table is used which has values from 0 - 255. A pixel
value of zero will be displayed as black, and a pixel value of 255 will
be displayed as a bright white. Qther pixel values will result in
intermediate grey levels. The data scaling operation performed in the
CAP insures that all pixels transmitted to the RAMTEK display will have
values in the range 0 - 255. The final output display presentation is
an intensity modulated Sine X/X function similar to Figure 7(c).
Detailed 1istings of the VAP, CAP, IOC, and VAX programs for this
demonstration are incorporated as Appendix A.

Only one VAP is required for the demonstration program which has
been described, although the MRSP is actually configured with two VAP
units. These are termed VAPl and VAP2. The listings in the appendix
are for VAP1l. The same program was run in VAP2 with identical results.
To use VAP2 a few coding changes are required in the 10C and VAX host
programs. [0C Port #6 and Port #2 are used to communicate with VAP2,
while Port #5 and Port #0 were used to communicate with VAPLl. Also,
different I0C flags are used to control the VAP2 Input/Output buffers.

48

AFWAL-TR-83-1045

The VAP1 and VAP2 programs themselves are, of course, identical. A one
line change is required in the host VAX FORTRAN program to send the
sine/cosine coefficient table to VAP2 rather than to VAPl. No changes
are required in the CAP program to display VAP2 processed data.

Finally, it is worth noting that some cautions regarding amplitude
scaling should be observed when programming FFT operations in the VAP.
The VAP implements fixed-point integer arithmetic. When performing
complex number operations, it treats the real and imaginary components as
individual 16-bit two's complement quantities. Values for each
component are thus limited to a dynamic range of -32,768 to +32,767. If
saturation is allowed to occur in either the positive or negative
direction, inaccurate or indeterminate results will occur. This is the
programmer's responsibilitity to prevent, and no warning messages are
generated. When contemplating FFT operations, it is recommended tnat the
programmer perform a rough scaling analysis to estimate the maximum
amplitudes to be expected. The FFT instruction is performed in stages,
and amplitude values increase (accrue) with each successive stage. The
number of stages performed is directly related to the total number of
points in the FFT (previously denoted as N). The value of N is limited
to a power of 2, and the number of stages is the actual exponent of 2.

In the demonstration program, for example, each one-dimensional FFT is
512 points long. This is equivalent to 29, Therefore, 9 stages are
implemented for each one-dimensional FFT. The FFT instruction format
allows each stage to be individually scaled. When a stage is scaled, all
amplitudes are divided by a factor of two. Returning to the demonstra-
tion program, it will be recalled that the initial three-dimensional
input pulse was set to a constant amplitude of 1400. The length and
width dimensions were 16. The actual pulse thus consisted of 256 points
of amplitude 1400. A1l other points in the input function were set to
zero. From (Reference 1), it is noted that the maximum value to be
expected from the Fourier Transformation of a constant amplitude pulse is
equal to the amplitude of the pulse times the total number of points in
the pulse. For the demonstration program this is 256 X 1400 = 358,400.
Since this value is much larger than the saturation level, scaling is
required. In this program, the last 4 stages in the second set of FFT's
were scaled. The overall effect was to reduce the maximum expected

49

Pers=ivye- e

e

AFWAL-TR-83-1045

amplitude by a factor of 16. There are no fixed rules for determining
what stages should be scaled. Intuitively it would appear better to
scale the later stages in an FFT because larger values have accrued.
Scaling smaller values in the early stages may cause unnecessary
distortion to be carried through the entire process. Also, it appears
that greater accuracy could be achieved by utilizing as large a portion
of the dynamic range as possible without actually allowing saturation to
occur.

c. TIMING CONSIDERATIONS

The VAP has sufficient hard-wired arithmetic to perform a full
complex butterfly multiply and add in one clock cycle. A VAP clock
cycle is 100 nanoseconds, or 0.1 microsecond. The butterfly operation is
the b_sic computation required for FFT implementation in the VAP. As
previously indicated, the FFT is performed in stages, where the number of
stages is an integer exponent of 2. The number of clock cycles required
for the VAP to compute a complete FFT is specified as (N/2 + 3) X
(NUMBER OF STAGES), where N is the total number of points in the FFT. A
512 point (9 stage) one-dimensional FFT would reauire 2331 clock cycles.
This equates to about 233 microseconds. [t is interesting to compare
this computation time with that of a general purpose computer. A typical
medium scale (32-bit) machine can implement a 32-bit integer multiply in
6.4 microseconds, and a 32-bit integer add in 0.4 microseconds. The
time required for this machine to compute a complete 512 point FFT would
depend on the specific algorithm implemented. One popular technique is
the method of “successive doubling" (Reference 1). This technique
divides an N-point transform into two parts, and computes two N/2 point
transforms, The normal implementation limits N to a power of 2, and
performs the computation in stages, where the number of stages is the
exponent of 2. The number of muitiplies required for this technique is
(N/2) X (NUMBER OF STAGES), and the number of adds is N X (NUMBER OF
STAGES). Using this particular algorithm and the above instruction
times, a typical general purpose machine would require 16588
microseconds to compute a 512 point FFT. This is approximately 71 times
slower than the VAP. The ratio remains about the same if the FFT size is
increased to 4096 points (12 stages), which is the largest that can be

50

AFWAL-TR-83-1045

handled by the VAP. Assuming the ratio to be approximately valid, a
complex signal processing problem requiring 10 seconds of VAP time would
use 710 seconds or about 12 minutes on a typical general purpose machine.

When making timing comparisons, it is always difficult to calculate
the execution time of a series of VAP instructions because the
possibility of instuction overlap exists. This will decrease the actual
execution time. Also, a general purpose machine normally operates in a
time-shared environment, and there can be considerable variation in
response time due to resource sharing and to system overhead. The
estimates for a general purpose machine include only the theoretical FFT
computation time, and do not include the overhead of moving data into and
out of the various memory arrays. For comparison purposes, the VAP has
an effective memory access time of 100 nanoseconds, while a typical
general purpose machine has an effective memory access time of about 300
nanoseconds. Thus the VAP is about 3 times faster in this regard. The
memory access factor becomes more significant with larger FFT's, and the
overall effect is to significantly improve the VAP speed advantage.

3. PROGRAM FOR VERIFICATION OF DAG OPERATION

Verification of the Differential Address Generator (DAG) operation
was obtained by programming the MRSP using information and an example
provided by Westinghouse. The program implemented,is a two-dimensional
interpolation.

Verification required the use of three of the MRSP components:
the VAP, the IOC, and the CAP. The VAP was used for the arithmetic
operations necessary for the interpolation. The IOC was used to hold the
input data, and to transfer the necessary data to the VAP for
interpolation. Data for the DAG was provided by the CAP. Normally the
CAP would dynamically create the necessary data for the DAG. In this
case the CAP just transferred the previously calculated data to the DAG -
and provided operational control of the VAP and IOC. Also, the interpo-
lation was accomplished in VAPl and then accomplished in VAP2.

’ AFWAL-TR-83-1045

a. Functional Description

The DAG may be used to generate addressing for interpolations
where the output (resampled) vector is linear or quadratic in relation
to the input data. However, the DAG cannot be used where the slope of
the output in relation to the input is not strictly increasing or
strictly decreasing. Other applications of the DAG are possible, but
they will not be discussed here.

Structure of the DAG consists of two relatively simple
arithmetic units, AUl and AU2. These are used to generate values which
may be sent to one, two, or three double buffered tables. These tables
are the Address Offset Table (AQOT), Pointer Table 1 (PTl), and Pointer
Table 2 (PT2). Values in the pointer tables are used to address VAP
data memory locations; and values in the AOT are used to address the
10C bulk memory locations. Since the MRSP contains two VAPs, there are
two double buffered pointer tables for each VAP. Words in the DAG
register file (RF) determine which VAP will receive the pointer table
values.

Inputs and configuration of the DAG are specified by the RF.
The RF contains a control word, table looping values, AUl input values,
AU2 input values, and other control values. Determination of which
values will be read by the DAG is provided by the control word. It also
determines which tables will receive values.

Since the tables are double buffered, this allows very
efficient use of the tables and fast access times. While one part of a
table is being accessed, the other may be loaded by the DAG. This
provides minimal restraint in table usage.

b. Program Operation

The program interpolates a 6 point vector from 19 input
data vectors. Relation of the output to the input is linear, and the
distance between output samples is constant. The operation involves an
interpolation of points on the output vector from input data points in
the vertical direction, and an interpolation of the desired output ' ?

£ 52

AFWAL-TR-83-1045

locations from the previously obtained points (resampling along the
output vector).

In order to do this, four vectors are taken from the input data.
These vectors consist of points that are one element above and below the
output, and points that are 2 elements above and below the output. A
weighted average of these values is used to form points along the output
vector. Next, points that are 1 and 2 elements to the right and to the
left of the desired output points are extracted. A weighted average of
these points determines the desired output point values.

The first part of the interpolation is performed by extracting four
vectors from the IOC bulk memory and passing these to the VAP. The VAP
will weight each vector and add them together to form points along the
output vector. The second part of the interpolation is performed by
extracting four vectors from the VAP data memory which consist of points
from the previous interpolation results. These will be weighted and
summed in the VAP to obtain the desired output vector.

The values of the weights are loaded into the VAP immediately after
the VAP program is loaded. This includes the weights necessary for both
interpolations.

¢c. DAG Requirement

Five DAG RF loads are required to implement the interpolation.
The first load is used to create the values for PTl and AOT. Loads
number 2 through 4 are used to create AOT values. The fifth load creates
values for both PT1 and PT2.

Values from the first PT1 load are used to access the weight
values used in the first part of the interpolation. AOT values from the
first load are used to transfer the vector consisting of all the points
that are one element below the output vector to the VAP. Both of these
tables are obtained from the first DAG RF load.

AFWAL-TR-83-1045

The second DAG RF load generates AOT values to transfer the vector
of all points 2 elements below the output to the VAP. AQT values are
also generated for the third and fourth RF loads, which transfer the
vectors for 1 point above and 2 points above the output to the VAP. The
values loaded into PT1 from the first RF load are accessed four times,
once for each vector. However, four different weight sets in VAP data
memory are accessed by the pointer table (PT1).

.The fifth DAG RF load is used to generate both PTl and PT2 values.
These are used to extract and weight the vectors for the second part of
the interpolation. PT2 is used in extracting the vectors and PT1 is
used in accessing the weight values. Since both pointer tables may be
accessed at the same time by the VAP, this allows very efficient
operation. However, this creates some operational constraints, as the
VAP must use PT1 in memory reference descriptor 1 only, and PT2 must be
used in memory reference descriptor 3 only.

d. Considerations '

The DAG provides an extremely useful tool in programming
interpolations and related functions. Due to its required understanding
level and lack of instructional material however, it is very difficult to
program. This in part is due to the newness of the DAG component part
of the MRSP. The logical conclusion is that the DAG is a very powerful
tool, but its usefulness is currently limited by the support literature
and lack of knowledge in the area of its uses.

4. SUPPORT SOFTWARE MODIFICATIONS

An on-going objective of the MRSP Integration Facility if to
"streamline” the contractor-provided support software package whenever
practical by incorporating some of the unique capabilities of the VAX
11/750 host computer. As previously indicated in Chapter 3, the support
software package contains the modules required to assemble, link, load,
debug, and execute useful programs for the MRSP. The support software is
general in nature, and intended to be relatively independent of the
user-provided host computer. However, some of these routines can be made
to operate more efficiently by incorporating the unique features of a
particular host.

54

AFWAL-TR-83-1045

Soon after delivery of the MRSP hardware, two particular support
software operations emerged as obvious candidates for "streamlining".
One of these was the tedious procedure required to assemble.a CAP source
program, and the other was the time-consuming BINGEN procedure, which
converts an assembled CAP, VAP, or IOC program into a loadable binary
module. Initial assembly of a CAP program requires three separate
invocations of the File Manager support routine, several intermediate
commands to supply data to and exit from the File Manager, an invocation
of the linker/loader, and several additional ~ommands to generate a hard
copy of the source listing. This sequence of commands is difficult to
remember, and frequently results in errors. By contrast, the procedure
for generating a VAP or IOC assembly file and source listing is much
simpler, essentially requiring only one command. Once a CAP, VAP, or I0C
program has been assembled into the proper ASCII-octal format, the
BINGEN routine is invoked to generate a binary module that can be loaded
into the MRSP. The BINGEN routine supplied by the contractor was
designed to operate on a 16-bit machine, such as the Digital Equipment
Corporation PDP-11 Series. BINGEN will execute on the 32-bit VAX in
"Compatibility Mode", however, it is relatively slow and inefficient.
For example, BINGEN requires approximately 3 minutes to generate a binary
load module from an assembled VAP, CAP, or IOC ASCII-octal format file.

In order to speed up the binary generation process, a native VAX
routine called FASTBIN was developed. This routine completely bypasses
BINGEN, and utilizes some of the unique capabilities of the VAX/VMS
Operating System to derive binary data directly from an assembled ASCII-
octal format file. As a result, FASTBIN generates exactly the same load
module as BINGEN, but requires only about 3 seconds. A preliminary users
manual has been developed for FASTBIN, which is included as APPENDIX B.

In order to "streamline" the CAP assembly process, an interactive
command file called CAS was developed. CAS not only assembles a CAP
source file, but at the programmers option, automatically invokes FASTBIN
as well. In essence, CAS requires only one command to implement all the
steps necessary to generate a loadable binary module from a CAP source
program. in addition to FASTBIN, CAS incorporates the CAP loader,
deassembler, and translator as options, and may thus be tailored to

55

AFWAL-TR-83-1045

perform a variety of operations. To use CAS, the programmer simply
enters the name of the command file (CAS) followed by the optional
parameter. A prompt then appears requesting the name of the CAP source
file. Once this has been entered, the -emainder of the procedure is
totally automatic. The CAS command file has been incorporated as
APPENDIX C.

5. CONCLUSIONS AND FUTURE ACTIVITIES

This interim report documents activities of the MRSP Integration
Facility from project initiation February 1981 through December 1982.
The actual MRSP hardware was delivered in March 1982. The primary
accomplishments during this period include the development of a software
package to integrate the output display system, some preliminary test
programs to demonstrate the processing power of the MRSP, and several
significant in-house improvements to the MRSP support software.
Additionally, AFWAL/AARM personnel have gained a high degree of
experience and programming proficiency with this relatively complex
system.

The MRSP is basically a prototype machine. Experiments conducted
during the course of this effort have verified that it has the capability
to perform extremely high speed arithmetic operations on large blocks of
data. In fact, the VAP operates most efficiently when the largest
possible array lengths are used. Additionally, the MRSP has proven to be
quite reliable from a maintenance standpoint.

The MRSP was purchased primarily to perform signal processing
experiments relating to the generation and analysis of radar image data.
However, very little work with actual image data was accomplished during
the reporting period, primarily because of disk storage limitations on
the VAX 11/750 host computer. A typical radar image consisting of 1024 X
1024 complex picture cells (pixels) would require about 4.3 megabytes of
storage. Throughout most of the reporting period, the VAX was
supporting several programs in addition to the MRSP, and could not
conveniently accommodate such large files. Recently however, two large
capacity disk drives (300 megabytes each) have been added to the VAX.

56

AFWAL-TR~83-1045

These will permit storage of large image files. During the next
reporting period, some representative signal processing operations,
including frequency filtering and detection, will be performed with
actual radar image data to demonstrate the ﬁti]ity of the MRSP. Also
during the next reporting period, a significant portion of the effort
will be directed toward the Differential Address Generator (DAG)
capabilities of the MRSP. T!'2 DAG is the MRSP hardware option that has
the capability to generate high speed non-consecutive address sequences
for the Bulk Memory or VAP data memory. This device has the potential to
be extremely useful for certain nonlinear radar oriented interpolation
operations. However, throughout most of the period covered by this
report the DAG was plagued with persistent subtle hardware anomalies that
inhibited its performance. A recent maintenance visit by the contractor
has apparently corrected most of these problems. One operation of
particular interest with regard to the DAG is the resampling of certain
radar data from a polar format to a rectangular format, from which it can
be more conveniently processed. The polar/rectangular resampling
operation typically places a very high computational burden on a signal
processor, and is usually accomplished at less than “"real-time" rates.
However, by virtue of the DAG, the MRSP has the potential to perform this
operation much faster. Ouring the next reporting period experiments

will be designed to demonstrate this capability.

AFWAL-TR-83-1045

APPENDIX A

SAMPLE PROGRAM LISTINGS

b sk

AFWAL-TR-83-1045

SAMPLE PROGRAM LISTINGS

1. FFTDEMO.COM

This procedure executes a series of VAX/VMS Operating System level
commands for a two-dimensional FFT demonstration.

2. F2VAP.VAP

This is a VAP assembly language program that performs computations
for a 512 X 512 two-dimensional FFT.

3. F2pIOC.IOC

This is an IOC assembly language program that controls the Bulk
Memory transfer required for a 512 X 512 two-dimensional FFT computation
by VAPl. It also accepts input data from the VAX and transmits processed
results to the CAP.

4. F2DCAP. CAP

This is a CAP assembly language program that scales processed data
and transmits it to the RAMTEK Display.

5. F2DVAX.FOR

This is a VAX FORTRAN program that generates a 512 X 512 point
input function for FFT operations. It also generates a 512 point
sine/cosine coefficient table for the basic FFT computation. *

6. IOCEXE.FOR .

This VAX FORTRAN program uses the PSPIO utility to execute an
operational program that has been loaded into the I0C.

7. CAPEXE.FOR

This VAX FORTRAN program uses the PSPIQ utility to execute an
operational program that has been loaded into the CAP,

——

AFWAL-TR-83-1045

dNiS 8 00LZ

1§ 009z
*ONYHWOD AINDAXA NMO SI1 SIIYNANID 3INAOW _dVA tATON 1 8 00ST

THETn6vE
AXAAVD NOY S 00€T

B B BN L 14 2

‘31000N_dVD ILNDAXT_ 0L WYHOOMd NVMLUOS XVA V NN T § 0012
175 0002
XVAGZA NNB § 0061

V006t T T

Saravy INATD14I70D ANTSOI/ANIS ANV NOTIOwNd § ¢ 0oLt

INANT IVILINT BLVHINTD OL WVUO0ud NVUINOJd XYA aiadaxa | & 009% o
1 s 00St
AXAI0T NnY § (112 S
ts__ooey
$31NA0W D01 AINHIXT DI WYHOOMA NVHINDI XVA ¥V NN¥ | 8 o00Z1
R 1 ¢ o011
dvoati=tavdm waidsd 8§ o000t

J01AZJ4=230VdM Yanded 8 006

AVAQZA=T0VAN Wa1dSd 8 008

18 ooL
¥E3IN00W KUVNId 00T ANV'dVo dvh avel § 8 000
18 o0s .
*NOIIVNISNOWAG 143 TVYNOISNANIG-nML | § 00V
V_ 404 SANVWWOD 40 3ININD3IS ¥ SALNIIAXA AUNAIIONd SIHL § 8 00€
T% 662
_ W02 ‘Owa05Jd 1 s oo1

Woo“OWdd Ldd *\

s e

AFNAL-~TR-83-1045

2. F2OVAP.VAF

190 TITLE F20VAP
200
300 ., . THIS PROGRAM PERFORMS A TWO=DIMENSIONAL FFT COMPUTATION.
400 . TWO SEPARATE PASSES THRU THE VAP ARE REQUIRED, EACH PASS
S00 ., PROCESSES 512 BLOCKS OF DATA IN WHICH EACH BLUCK CONTAINS
600 . 512 PIXELS.
800 . . DEFINE MCMORIES AND PARAMETERS
900 .
1000 INEND EQu t e BIT SET TO INDICATE END OF TRANSFER
1100 BRN9 _EQU 9
1200 V01 EQU 8 - VIDEO OUTPUT 1 EQiv TO MEM &
1300 Vo2 EQU 9 » VIDEQ QUTPUT 2 EQUIV TO MEM 9
1400 Vi1 £au 0 - VID)
1500 VI2 EQU 7 « VIDEO INPUT 1 EQUIV TQ MEM 7
1600. NOEND EQU. O e BIT NOT SEI ~ TRANSFER NOT COMPLEIE
1700 INC _EQU 1
1800 K DS~ M5,0512 - .
1900 K31 DS MS5,0513 :
2000 M1DATA DS M1,00 . VAP MEM 1 STAREIS AT LOCATION O
2100 M2DATA _ DS M2,00 « VAP MEM 2 STARTS AT LOCATION U
2200 M3DATA DS M3,00 « VAP NEN 3 » " . v
2300 M4DATA _ 0S M4,00 . VAP _MEM 4 . " v "
2400 MSCOEF DS N5,00 e VAP MEM 5 " " . .
2500 M6DATA DS _ M6,00
2600 MiUP DS M1,0512
2700 M2UP__ DS M2,0%812
2800 M3UP 0S M3,0512
2900 M4UP__ DS 4,05
3000 MSUP DS M5,0S812
—3100 MOUP DS 46,0512
3300 ., . CLEAR DATA MEMS & MQVE IN DETECT CONSTANT
3400 -
3500 CLRM __ N1024:M1:M2;M3I;ME;NSIN6
3600 START MOVECM N1:K
3700 . — —
3800 . . MOVE IN 512 POINT SINE/COSINE COEFFICIENT TABLE FROM HOST
3900 _
4000 MOVECN NS12;MSCOEF,,BRN9
4100
4200 . . PERFORM FIRST PASS FFT COMPUTATIONS
4300
4400 LOOP MOVERO NS12;VII;MIDATA
4500 MOVERQO N256:M1DATA+2563M2DATA
4600 8P Se1:1

4700 i FFT N2563MSCOEFM1DATA: M2DATAZMIOATAIMADATA;959:Y

4300 MUVERQO N2563M3IDATA,,83M1DATA

4900 MOVERO N2563M4DATA, ,8;M1DATA+256

5000 MOVERQ N512:M1DATA; VD]

5100 REP LOOP7VS12

5200 . ‘

$300 o o PERFORM SECOND PASS FFT COMPUTATIONS

5400 . '

35500 Loup2 MOVERO hS512;VI1;M10ATA

5600 MOVERU N256:;MIDATA+2567M2VATA

5700 BP $+i2i

5800 FFT N250;MSCOEF S Y1DATASM2UATA; MIDALAMADATAS 97939307
5900 "

6000 e o« PERFORM DETECT OPERATION ON PRUCESSED DATA

6100

AFWAL-TR-83-1045

2. F2DVAP.VAP (Continued)

6200 DET N2563K, I03M3IDATA,,8;M1DATA
6300 DET'EEEE{Kf&?%i?ﬁ??ﬁffﬁ?ﬂiﬁt!i

6400 MOVERO N2563MADATA;M2DATA+256
6500 MOVERO N512;M2DATA;VO1

6600 REP LOOP2:VS512

6700 .

6800 HALT

6900 END

7000

DATMEM SELECT CUDE IS 16(OCTAL)

STARTING ADDRESS FOR MACRO PROGRAM

& DATMEM IS AT LOCATION 0

MACRO PROGRAM SELECT CUDE IS 00U
Ok, i Al

7100 DATMEM EQU 016
7200 STADDR EQU 0
7300

7400 WACRO EQU 00
7500 XQ@T — tau 1

o ofo 9 le o

7600 D32 EQU 1 32 BIT WORD TRANSFER IS SET WITH 1
7700 .
__7800 . EXECUTE VAP PRUGRAM
7900 .
8000 FWABC _STADDR; ;MACRO,XQT
8100 FWABC STADDR,1;;DAIMEM,,D32
8200 . _ _
8300 DETECT CONSTANTS
8400 0032405,0077777,0100000,0100000
8500 END

63

AFWAL-TR-83-1045

3. F2p10C. I0C
100 TITLE £2010C
200 . :
300 THIS PROGRAM SUPPORTS A 512 X 512 TWO=UIMENSIONAL FFT
400 . COMPUTATIOM WHICH 1S PERFORMED BY VAP #1. PORT & ACCEPIS
500 INITIAL DATA FROM HOST IN BLOCKS OF 512 PIXELS., PORTS
—600 . S S 0 OPERATE IN PING-PONG FASHIDN TO AOVE DATA INTO AND
QUT OF VAP IN BLOCKS 512 PIXELS. TWO PASSES THRU VAP
800 . ARE NECESSARY FOR A TwU-DIMENSIOWAL FFT., A CORNER=TUHRN
900 . - IS REQUIRED IN BULK MEM FOR SECOND PASS. PORT 3 SENDS THE
1000 . PROCESSED DATA TO CAP IN BLOCKS OF 512 PIXELS.
1100 N ‘
1200 SCCIR 1,0 '
_1300 _ BUFF __ RES 262144 -
1400 EOT EaU 1
1500 _OUT _ EGU 1
1600 1IN £QU 0
1700 LU ___EQU 1018
1800 LL EQU 1008
1900 UU___EQU 1118
2000 UL EQU 1108
2100 OUMFLG Equ 9
2200 PADONE EQU 6
2300 _ PSDONE _ EQU 8
| 2400 PCOGNE EQU 7
.2500___PQHOLD _ EQU §
2600 .
2700 PRIO 4,5,0,3,1,2,6,7
2800 .
2900 . . UNUSED PORTS
3000 PORT 1
Alyo PURT 2
3200 PORT 6
3300 PORT 7
3400 HULD JUMP HOLD
3500
3600 PORT &
Sr09 SETBA QUFE-1,IN
3800 LOUP4 INPOFS 1,1,LL
3900 INPOFS 0.1,LU
4000 REPEAT LOOP4,512,1
4190 REPEAT LOUP4.512,2
4200 SETF PADONE
4300 WALT DUMFLG,QUT
4400 .
4500 PURT S
4600 wAIT P4DONE,OUT
4700 __ SETBA BUbKet
agvo .
4900 . ., NOTE; FLAG 14 CONTROLS VAP #1 INPUT BUFFER
5000 .
5100 LOOPS _ SETF 14
5200 DELAY 8
5390 ‘OUTOFS 1,512,0,,E0T
5400 CLRF 1% ,
5500 QELAY ¥
560y SeTF PSDUNE
5700 aA]T POOUNE
5800 REPLAT LUGPS,512,1
] 590V .

6000 e o CURNER=TURN FOR SECOwL PASS THRU VAP
6100 SETBa BUFb=512

AFWNAL-TR-83-1045

3. F2010C.I0C (Continued)

6200 LOOPSA _ SETF 14

6300 DELAY 8
6409 _QUTOFS 512,512,0,,E0T
6500 " CLRF 14
6600 : DELAY §
6700 INCBA 1
<5800 DECHA 262144
6900 SETF PSUONE
wAIT P
7100 REPEAT LOOPSA,S512,1
7200 WAIT OUMFLG
7300
7400 o
7500 PORT 0
1600 _ SETBA BUFF=~1,IN
7700 LOOPO WALT PSUONE
_78Q0 o o
7900 . . NOTE: FLAG 12 CONTROLS VAP #i OUTPUT BUFFER
8100 SET¥ 12
8200 DELAY &
8300 INPOFS 1,512,0,,E0T
8400 CLRF 12
8500 DELAY 9
8600 SETF_PODONE
8700 REPEAT LOUPO,512,1
8800 _
8900 . . CORNER=TURN RETURNS DATA TO SAME LOCATIONS UF BULK REM
9000 SETBA BUFF=512
9100 LUOPUA WALT PSOONE
9200 SETF 12
9300 DELAY 8
9400 INPOFS 512,512,0,,E0T
9500 CLRF 12
9600 DELAY 8
9700 INCBA 1
98090 DECBA 262144
9900 SETF PODONME
10100 SETF POHOLD
19200 wAIT DUMFLG
10300 .
L0490 o
10500 PORT 3
10690 waAlTl POHOLD,OUT
10700 SETBA BUFFe=1

10800 LOO¥3 CLRF {8

10900 LOOP3A DELAY ¥

11000

11100 . . NUTE: UNGY 64 PIXELS/TRANSFER FUR UMA GHAw #1
11200, FLAG 18 CONTROLS THIS TRANSFER
11300 .

_11400 UUTOFS 1,64,LL, ,EUT

11500 REPEAT LUUP3A,T,2

11600 DELAY _

11700 JUTGFS 1,04,0L,18,80T

_1180¢ __UELAY 8

11900 REPELAT LOUP3,512,1
12000___hOLDI __ JUMP HULDJ

12100 EnD

65

AFWAL-TR-83-1045

4. F20CAP.CAP

100 ;%A ASSEMBLE. F20CAP,F20CAP 50
200 .

300 s o THIS PROGRAM ACCEPIS UNSCALED IMAGE OATA IN BLOCKS OF
400 . 512 PIXELS FROM BULK MEM THRU DMA CHAN #1. 1T SCAL
500 . THE OATA AND SENDS IT TO RAMTEK THRU DMA CHAN %6, A
600 . TOTAL OF 512 BLOCKS ARE REGUIRED TU FILL THE RAMTEK
100 2 VISPLAY, A LINEAR LOOKUP TABLE IS ALSU SENT TU RAMIEK.
400 .
300 oo OEFINE REGISTERS & PARAMETERS
1000 R EQU
1100 R2 EQU
1200 R3 EQU
_1300 Re EQU
1400 RS EQU
1500 8 EQU
1600 EQU
1700 EQ EQU
1800 NE EWU
1900 — '
2000 e o« DEFINE INTERUPTS 1 & &
2100 MASK _ EQU \42
2200 N :
2300 s o PROGRAM INITIALIZATION
2400 CCIR 1
. 2500 DSBL
2600 CLIR
2700 LIm R1,MASK
2800 SIC Rl
2900 J BEGIN
3000 RES 24
3100 +INTADL
3200 +INT1
3300 _NES 8
3400 +INTAD®
3500 +INT6
3600 RES 82
3700 a
3800 e o GENERATE RAMTEK LOOKUP TABLE
3990 BEGIN LIM RY,DATI
4000 ST R1,ADDR
4100 LIM R1,0Q
4200 BEG1 STI R1,ADDR
4300 IM_ADOR
4400. Al R1,1
_4500 CIM R1,256
4600 JC Wk ,dEG)
_4700___ _
4300 e o« CLEAR INTERUPT FLAGS & RESET RAMTEK
4900 STZ DTRED®G
Soov STZ DTRED1
5100 LIA RS,0
$200 LIm R1,0
__5300 HO _K1,M\59
5400 LIa R1,\4200
5500 no _R1,\84
560y CLIN
S700 - 8ol
5800 B
5900 o LOAD LOONKUP TABR & «AXT tOr RAMTER INVERUPT
69UV sS4 15,0TRELE
6100 : LIN k1l ,LULAB

RS
R7

AFNAL-TR-83-1045

4, F2DCAP.CAP (Continued)

_6200 HO R1,\58
6300 LIM R1,\104
6400 HO R1,\59
6500 LIM R1,\2001
6600 HQ R1,\5A

6700 HOLD:T L R1,DIREDG
6800 — 4G NE,HOLDL

6900 .
7090 2 M
7100 e o READ 512 WORDS FROM BULK MEM & WAIT FOR INTERUPT
7200 s o STQRE IN TEMP BUFFER
7300 LIM R4,0
7400 LIM R3,0
7500 NPUT S8 15,0TRED1
7600 LIM R1,BUFF)
7700 HO R1,\44
_71800 __LIm R1,\200
7900 HO R1,\45
8000 LIM R1,\11
8100 HQ R1,\46
8200 HOLD2 L_R1,0TRED1
8300 JC NE,HOLD2
8400 . N
8500 e « SCALE IMAGE DATA BY FACTOR OF 128
8600 a_s STURE IN QUTPUT BUFFER
§700 LIn ®7,0
8800 __LIM R1,8UFF}
8900 ST R1,ADDR1
9000 LIM R1,BUFF
9100 ST R1,AQDR
9200 LOOP LI R1,ADDRY
9300 SRA R1,7
9400 STI R1,ADDR
9500 IM ADOR1
9600 LM ADOR
9700 Alma R7,1
980 M R7
9900 JC. NE,LOOP
10000 2
101vo e o SEND 512 wWORDS TO RAMTEK AND WAIT FOR INTERRUPT
10200 s o REPEAT ENTIRE SEQUENCE 512 TIMES
10300 S8 15,0IREDS
R M
10509 HQ R1,\b8
106909 LIm R},N208
10709 HU R1,\59
1084990 _ LiIm R1,N\N2001
10900 U K1,\5A
41000 HOLO3 L R1,DTREDE
11100 JC NE,n0OLD3
11200 _ 1M RAM+3
11300 " AIM R3,1Q
_11400 _Cim R3I,S512
11500 JC ok, INPUT
116900 HALT
11700 J S
11890 .
11900 « o LNTERRUPT SERVICE ROUTINMNES
- 129900 EVEN :

12100 INTL STZ ULKEDL
12200 Als n4,)

AFWAL-TR-83-1045

4. F2DCAP.CAP (Continued)

| ENBL
| 12400 EXS INTAD1
—32500 ., _
12600 EVEN
12700 INT6 STZ DTRED6
12800 AIN R5,1
ENBL
13000 EXS INTADG
13100

13200 e o RAMTEK INSTRUCTIONS TO LOAD LOOKUP TABLE.
13300 LUTAB DATA \300

' 13400 DATA \800Q0
4 13500 DATA \202
' : 136C0 DAT1 RES 260
13700

13800 e o RAMTEK INSTRUCTIONS TU SEND IMAGE DATA TU D1SPLAY
13900 RAM DATA \AO3

14000 DATA \CO
14100 DATA \O
14200 DATA \O
14300 DATA \1FF
14400 DATA \1FF
14500 DATA \0
i 14600 DATA \4uU
14700 _ BUFF __RES 520 _
14800 R
14900 o o TEMP STORAGE FQR UNSCALED DATA
15000 BUFF1 RES 520
15100 .
15200 e o INTERUPT LINKAGE ADDRESSES

15300 EVEN
15400 INTADY RES 2
15500 INTADG RES 2
15600 o .
15700 e o INTERHUPT FLAGS
15800 DTREDL RES 1

RES }
16000 .

. o BUFFER POINTERS
16200 ADDR RES 1
16300 ADDR1 RES 1
16400 END

68

AFWAL-TR-83-1045

y
.5. F2DYAX.FOR
000} PROGRAM F2DVAX
3
CesssoTHIS PROGRAM SUPPORTS A TWO=DIMENSIONAL FFT COMPUTATION
C WHICH IS ULTIMATELY PERFORMED BY VAP #1., THE PRUGHRAM
_C GENERATES THE INITIAL THREE=DIMENSIONAL PULSE FUNCTIUN
C AND SENDS LT TO BULK MEMUKY. IT THEN GENERATES THE 512
c POINT SINE/CUSINE COEFFICIENT TABLE AND SEnDS IT TD
C VAP #1 DATA MEMORY
c
C
0002 IMPLICIT INTEGER*2 (B=~Y)
V003 INCLUDE. 'PSPSLIB:PSPIOF . LNC!
® C -
% C o== DEFINE PSP L/0 FUNCTION CODES.
0004 % PARAMETER IOWALL 3 1 {wRITE PASS ALL
0005 * PARAMETER LORALL = 2 IREAD PASS ALL
0000 % PARAMEIER IOWDR = 3 IWRITE DEVICE REGISTERS
0007 # PARAMETER IORDR = & IREAD DEVICE REGISTERS
voo8 % PARAMETER IOINIT = 5 'INITIALIZE DR11=8IF
0009 * PARAMETER IUSYSC = 6 ISYSCRASH DMA CHANNEL BUS AND CAP
V010 * PAHAMETER I0XQT = 7 IEXECUTE CAP .
0011 = PARAMETER IOWRIT = ¥ 1WRITE DATA, GEN ALERT LF CBUS
| 0012 _* PARA R =9 1READ DATA N_ALERT IF CBUS
W3 * PARAMETER IOWCON = 10 LWRITE, CONTINUATION OF PREVIOUS TRANSFER
0014 _* PARAMETER JORCON = 11 !READ, CONTINUATION UF PREVIOUS YRANSFER
Vo1S = PARAMETER IOWHA = 12 !wRITE HARD ADDRESS, GENERAT:t ALERT wORDS
vole _* PARAMETER IORHA = 13 ‘READ HARD ADDRESS, GENERATE ALERT w#URDS
w17 * PARAMELER MAXFUN = 13 'MAXINUM LEGAL FUNCTIUN CODE
% C ’
% C o== DEFINE PSP 1/0 SUBFUNCTION MODIFIER BITS.
0018 & PARAMETER IOTR32 = 256 !PERFORM 32<8IT TRANSFER
0019 = PARAMETER IOTEST = 512 LENABLE TEST MODE .
‘ 0020 * PARAMETER IOLOCK = 1024 !LOCKGUT ACCESS TO SLAVE BY OTHER CHANNELS
L 0021 INCLUDE 'PSPSLIBSUTIPES.INC' .
: ou22__* PARAMETER CAPTYP=}, IOCTYP32, VAPTYP=3, BMTYP=4, CBPTYP=S
0023 INCLUDE. 'PSPSLIBIUNITSX,.INC'
Qu24 % DATA _ UNTDSC
% A / ‘'VA','P1',' ', 3, 2, 1, 3, 5%,
* 8 '10', 'c 1t ', 2, 2, 2, 3, 5%0,
L C 'CA' 'p' " 1' 0, o, 0’ 5‘00
x 1 'VA', ~92- 'v,3,2,3,3,5%0,
* % T8U', vux' T, 4, 2, &, U, 5%0,
hd F ‘mX', 2! ', 5, 4, 4, 4, 3, 1, 0, 1, U,
] * G TNUT, 'uu' ', 9%Q,
_ * H "NU'L'LLY, ! ', 9sQ/
* C
s C
0029 CUMMON 7UNTDSC/ DMUDE
0026 INTEGER®2 UNTDSC(12,¥)
w027 INTEGER*2 LA(S512),LB(512)
Qu28 DOUBLE PRECISION AINC,AD,ABX,AAX
002y COMMON /DRDEVX/ DUN,DRDEV(3,4)
KCE DTIMENSION QUTPUT(1027)
“gu3l uifi""?ﬁ?EFTTﬁéﬁgﬁ.vsp.VAP,Tho.fﬁETTTll.2.1,1.0.07
0032 DATA OUTPUT(1),UUTPUT(2),0UTPUT(3)/0,1024,"1016/
OEY) OATA DRDEV
A /'“P','Ao',': " 'wP'J'BO','G " ox! v/
)

AFWAL-TR-83-1045
5. F20VAX.FOR (CQHILEUgD)

c
CeooooASSIGN A VAX I/0 CHANNEL

¢
0034 CALL ASNDEV (DRDEV,S,DUNIT,I10STAT)
0035 IF_(IOSTAT ,NE. 0) GO TO 9999

C

Coeooos GENERATE THREE DIMENSIONAL PULSE FUNCTION
C

0036 NUMOUT=1024 .
0037 DO 100 I=4,1027
0038 100 QUTPUT(I)=0
90039 DO 101 1=5,35,2
0040 101 QUTPUT(I)=1400
0041 DO 105 I=1,512
0042 IACI)=JUTPUT(2%I+3)
0043 IACII=IA(I)*(=1)*%[
0044 _ QUTPUT(2*I+3)=IA(I)
0045 105 CONTINUE
c
CevoveooSEND PULSE FUNCTIUN TO BULK MEMORY

DO 110 I=1,16
CALL PSPIO(IOWRIT,DUNIT,UNTDSC(L,5),0,NUNOUT
,OUTPUT(4),0,L10STAT)

oo_;oo 124,67

QUTPUT(I)=0

DO 150 I=17,512
CALL PSPIOCIOWRIT,DUNIT,UNTDSC(1,5),0,NUNOUT
1 ,OUTPUT(4),0,I0STAT)

Ceeoe o GENERATE FFT SINE/COSINE COEFFICIENTS

AD=3,14159265

AINC=AD/512

DO 160 I=1,512

AAX=DCOS(AD)

ABX=DSIN(AD)
AA=AAX%*32768
AB=ABX#32768
ADZAD+AINC
IA(I)=AA
IB(I)=AB
QUTPUT(2%1+2)=18(1)
OUTPUT(2*I+3)=IA(I)

160 CONTINUE

C

C

NUMOUT=1027
CALL PSPIO(IUwWRLT,OUNLIT,UNEDSC(1,1),0,wUMOUT
1 ,OUTPUT(1),V,l0STAL)

STOP

END

AFWAL-TR-83-1045
' 6. IOCEXE.FOR
0001 PROGRAM IOCEXE
Cc
CeoeselHIS PROGRAM USES THE PSPLO UTILITY TO EXECUTE A "BINARY
C MODULE THAT HAS BDEEN LOADED INTO THE lOC.
C
: [+
0002 IMPLICIT INTEGER®2 (B=Y)
00u3 INCLUDE . 'PSPSLIB:PSPIQF,.INC!
% C .
3 ew= DEFIN P I/U FUN [¥] ES.
0004 = PARAMETER IOWALL = 1 L{WRITE PASS ALL
0005 * AM s ¢ . LL
0006 * PARAMETER IOWDR = 3 {WRITE DEVICE REGISTERS
9007 * PARAMETER IORDR = & TREAD DEVICE REGISTERS
0008 = PARAMETER IOINIT = 5 LINITIALIZE DR11-81IF
V0u9 * PARAMETER IO0OSYSC = 6 TISYSCRASH DMA CHANNEL BUS AND CAP
._0010 = PARAMEIER I0OXQT = 7 {EXECUTE CAP
d011 * PARAMETER IOWRIT = 8 WRITE DATA, N ALERT IF CBUS
0012 =» PARAMETER IQREAD = 9 {READ DATA, GEN ALERT [F CBUS
0013 = PARAMETER IOwCON = 10 TWRILE, CONTINUATION UF PREVIOUS TRANSFER
0014 =* PARAMETER IORCON = 11 {READ, CONTINUATION OF PREVLIOUS TRANSFER
001y = PARAMETER IQWHA = 12 TWRITE HARD ADDRESS, GENENATE ALERT WORDS
0016 * PARAMETER IORHA = 13 LREAD HARD ADDRESS, GENERATE ALERT wORODS
vo17 % PARAMETER MAXFUN = 13 ;HAXIHUM LEGAL FUNCIION COUE
* C
3 ¥ C wo= DEFINE PSP 1/0 SUBFUNCTIION MOOIFIER B1iSe.
. G018 % PARAMETER IOTR32 = 256 !PEERFORM 32=8IT [RANSFER
0019 * PARAMETER IQTEST = 512 !ENASBLE TEST mOuLE
0020 = PARAMETER IOLUCK = 1024 !LOCKOUT ACCESS TO SLAVE oY OTHER CHANNELS
0021 INCLUDE 'PSPSLIBIUTYPES,INC!
0022 = PARAMETER CAPTYPS1, I10CTYP=22, VAPTYIP=23, BMTYIP=4, CBPILYP=S
0023 INCLUDE 'PSPSLIB:UNITSX,.INCT
0024 * OATA UNTDSC
¥ A /7 'VA', P10 'y 3, 2, 1, 3, S5%0,
* _B '1o'.'c ‘', Y, 2, 2, 2, 3, 5%0,
x C TCAY, 'R ', 'y 1, 0, v, 0, 5%0,
x 1 'YA','P2¢Y, ¢ ', 3,2,3,3,5%y,
x E 'BU','LK',' ', 4, 2, &, 9, 5%0,
* F 'MX','m ', 'V, 5, 4, 4, 4, 3, 1, G, 1, O,
) G "NU','LL',! v, 9%0,
* . H ‘NU', 'LLY ! ', 9%0/
* C
x C _
0025 COMMON /UNTDSC/ DMOLE
g90206 INnTEGER*2 UNTDSC(12,4)
0027 INTEGER®2 FUNCWD(3)
0028 OMMON /DRDEVX/ DUN,ORDEV(3,4)
0029 DATA TOPSP,FRMPSP ,PSP,vAP,TMO,108TAT/1,2,1,1,0,0/
. _00.30 DATA FUNCWD/0,0,"100000/ _
VU3l DATA DRDEY
e A /ilwPl,ta0",': ', 'awp!, 180',': ', 6X! '/
C
CoacoosASSIGN A VAX I1/0 CHANNEL
C
__0032 CALL ASNDEV (DRDEV,5,DUNIT,IOSTAT)
vo33 IF (IOSTAT (NE, 0) GO TO 9999y
C
]

n

AFWAL-TR-83-1045

6. [OCEXE.FOR (CONTINUED)

Cooees BXECUTE IQC

CALL PSPIUCLUWRLT,UUNIT,unt0SC(1,2),u,s

1 ,FUNCWD,0,10STAT)

C
0034

.-'--C -—
VU35 9599
0036

STUP o
END

'"""-""'"""’""'-'---!!--'--------u-u-lll'

AFWAL-TR-83-1045

¥ 7. CAPEXE.FOR

0001 PROGRAM: CAPEXE
(o .
Ceeee . THIS PROGRAM USES THE PSPIO UTILITY TU EXECUTE A BINARY
o MUDULE THAT HAS BEEN LOUADED INTU THE CAP. :

_C
C
002 IMPLICIT INTEGER®2 (B~Y)
4003 INCLUDE "PSPSLIB:PSPLOF .INC'
* C
¥ C === DEFINE PSP 1/0 FUNCYION CODES,
0004 * PARAMETER IOWALL = 1 !WRITE PASS ALL
0005 * PARAMETER LORALL = 2 TREAD PASS ALL
0006 * PARAMETER IOWDR = 3 {WRITE DEVICE REGISTERS
0007 » PARAMETER IORDR = & *READ DEVICE REGISTERS
0008 % PARAMEIER IOINIT = 5 SINITIALIZE. DR11=BIF
0009 = PARAMETER I0SYSC = o ISYSCRASH DMA CHANNEL BUS AND CAP
0010 = PARAMETER I0XQT = 7 {EXECUTE CAP
0011 *# PARAMETER 10WRIT = 8 TwRITE OATA, GEN ALERT IF CBUS
0012 = PARAMETER IOREAD = 9 ~ !READ DATA, GEN ALERT IF CBUS
0013 * PARAMETER IOWCON = 10 LARITE, CONTINUATION UF PREVIOUS TRANSFER
0014 * PARAMETER. IORCON = 11 {READ, CONTINUATION OF PREVIQUS TRANSFER
0015 # PARAMETER IOWHA = 12 TWRITE HARD ADDRESS, GENERAIE ALERT wURDS
0016 % PARAMETER IORHA = SREAD HARD ADDRESS, GENERATE ALERT wORDS
0017 = PARAMETER naxruh‘??13"‘TREETEEF'E£E1L FUNCTIUN CUDE
5 C
| £ C eoe DEFINE PSP 1/0 SUBFUNCTION MODIFIER BITS.
yuls = PARAMETER IOTR32 = 256 !PERFORM 32-BIT TRANSFER
0U19 # PARAMETER IOTEST = S12 (ENABLE TEST MODE
0020 = PARAMETER IOLOCK = 1024 !LUCKOUT ACCESS TO SLAVE 8Y OTHER CHANNELS
V021 INCLUDE "TPSPSLIB:ULYPESSINC'
_ 0022 = PARAMETER CAPTYP=1, IQCTYIP=2, VAPTYP=3, BMTYP34, CBPTYP=S
0023 INCLUDE 'PSPSLIB:UNITSX.INC!
0024 % DATA UNTDSC
* A / 'VA','PY',Y ', 3, 2, 1, 3, 5%0,
b B 'IO','C ." 'l 2' 2' 2' 3' E‘rol
x Cc 'CAY, L '» L, 0, 0y, 0, 5%Q,
* 1 'va' 'P2',' ',3,2,3,3,5%0,
® E '8U','LK',! 'y 4, 2, &, U, S5%0,
x F 'Nx"'" "' " 5' 4' ‘0 " 3' 1' 0' 1' ol
x G 'NU',TLLY .Y ', 9%Q,
b H 'Nu'r'b&ir' Y, 9%Q/
l.C
* C
0025 COMMON /UNTDSC/ DMODE
__v026 INTEGER*2 UNTDSC(12,8)
0027 INTEGER®2 FUNCWD(3) -
0028 COMMON /DRDEVX/ DUN,DRDEV(3,4)
0029 OATA _ TOPSP,rRMPSP,PSB,VAP, THO,I0STAT/71,2.1,1,0,07
. 0030 DATA FUNCWD/0,U0,"1u0000/
0031 VATA DROEV
L A /'WP','A0','2 ', 'WP','8Q','3 ', gR' y
C
CueoessASSIGN A VAX 1/0 CHANNEL
C
_0v32 CALL ASNDEV (DRDEV,5,0UNIT,L0STAT)
U033 IF (IOSTAT .NE. V) GuU TO 9999
c
(]

) AFWAL-TR-83-1045
7. CAPEXE.FOR (CON1INUED)
Ceooeos EXECUTE CAP

&
0034 CALL PSPIO(CIUXWTL,LUNIT,UNTUSC(1,3),0,3
| 1 ,FUNCWD,0,1USTAT) ' '
c . I
0035 999y STUP

KT END

Ly AFWAL -TR-83-1045

APPENDIX B
FASTBIN USERS MANUAL AND INSTALLATION GUIDE

75

AFWAL-TR-83-1045

FASTBIM USER'S MANUAL AND INSTALLATION GUIDE PAGE 1

PREFACE 17 JAN 43

0.0 PREFACE

0.1 MANUAL OBJECTIVES

o IHIS MANUAL OESCRIBES _THE FASTHBIN BINAKY LUAY MULULE

GENERATOR FUR THE wbSTINGHOUSE PSPX+ SLGWAL PRUCESSUR, 1HlS

MANUAL IS DESIGNED PRIMARILY FOR REFERENCE ALTrnuuGH 11 1S

SLIGHTLY TUTURIAL.

0.2 INTENDED AUDIENCE

THIS MANUAL IS INTENDELD FOR READERS wHO ARe FAsMLLIAR &1IH
THE WESTINGHOUSE PSPX+ AND wHU UNDERSTAND The PRUCESS UF

PROGRAM DEVELOPMENT FOR THAT SYSIEtM., ThE READER SHUULW ALSU

BE FAMILIAR WITH THE VAX DCL COMMANU LANGUAGE ANU AITH THE

USE OF THE wESTLINGHUUSE BINGeN BIWAKY LUAD muvule otilnkKATUR.

0.3 STRUCTURE UF ThIS OUCUMENT

THIS MANUAL CONTAINS 4 SECTIONS ANu @ APPRNVUILICES.

1. SECTIUn 1 LNTRUUUCES wHAT FASTBIN LIS UDEV Fuk,

2. SECTION 2 DESCRIBES THE THREE WAYS TU AULLVATE 1nt
FASTBIN.ELXE LMAGE,

3, SECTLIUN 3 DESCKRIBES THE FASLIBIN QuiPUl.

4, SECTION & CONTAINS INSTRUCTIUNS ON CKEATLING CUSTOM

~ FASTbIN HEAUER ¢FILES.

5. APPENUIX A PRUVIDES THE SYNIAX UF 1Rt EXLI&NUED OCL
FASTBLN COMMANU LINE.

G. APPENDLX B UESCRIBES IHE IHKEE WAYS 1TU lUoLkALL IRt
FASIBIN EAE LMAGE INTO A VAX SYStem,

0.4 AsquLAruu PUCUMENLS

FAMILLIARLLY wltn toe CJINLEWTS Ul tAak PLubUILNS wJICUmentd
wlul B BOPECLAALLY nELPPUL 16 UNVDEROTANWWLING A01d AwuAuwl

77

- | - : -"'“'”"""-’f-"-!-"---!!!!!IIIIIIQ‘

AFWAL-TR-83-1045
_ FASTBIN USEK'S MAMUAL AnL [NSTALLATIUN uwuluk _PAGE 2
PREEACE 17 JAW v3
1. THE VAX/VMS COMMAND LANGUAGE USER'S GULLE. ~ PAl
PARTICULAR ALITENTION TO APPENLLX 2 PURE LGN
. COMMAND FEATUXE OF DCL. L
_ 2. LBE VAX/VMS VERSIUN 3.0 UTILITLES rbbexenCe mAnUAL,
PAY CAKRTICULAR ATTENLLIUN TO Ltre CHAPTEX ui Lhe uCL
_ CUMMAND DEPANILION UTILILY (SEL CUmmAwnbL).
3. THE wESTLINGHOUSE PSPX+ CAP PRUGHAMMEKRS AANUAL
(9RA3YLU2HOT1) .
e 4. VYHE WESTINGHAUUSE POPX¥ LUC/VAP/CHANGNLEL DuUs Usen's ™
. MANUAL (9RABOUL1HO1),
~ 1.0 1~TRUDUCTIUW m—
T UPRUGRAM UBEVELUPMENT tUR THE WAESLINGAUJOE FSPA+ SIGUAL
PROCESSUR STARLS 4lln hﬁ}TIHG A SUURCe Paludnrm 1idAl LS
"DESIGNED TU KUn In UNne OF ELIHeR 1He CAP, VAP wGR 1Ll
PROCESSURS, THIS SQUKLE PROGRAM 18 fhes AdSedbuel vila The
APPRUPRIALE ASSEMOBLER LU PROLUCE AN ASCLll UbJbUl wulrul el
(A .mAC FIuk). wmeXl, A BINARY LUAU Auwuuk 15 CREATED USING
EITHER THE bBlNGEe UR FASTBIN LUAD MuLyLL BLaGRALIUS
UTILILELES AWD Ihe JULPUT (A . Bli Flbe) LS LASILI dSPnCielou

AS IuPUT Ty IHE ¢SPLUR LOTILITY.
FILE INTU THE APPRUPRLATE PSPX+ CUMPUNRN'L PRUCROOUR

PSPLUK LUADD LhE cAtculAbLE

Al‘a\.l e

PRUGRAM LS READTY TU RuN. THLS MANUAL UESCRLIOES HUY

fUT useE

__ Ing FaASTBLn BiwAaxY LUAL MODULE GREWERALUR SbowlllacU Aduve I
OKOER TU PRUDUCE LUAD MUDULES ACCEPTAZLE 1U FSFLLK Rou 1Ac
r _ _TARGeT PS¥¢X+ PRUCESSURS. L
2.0 rASTBLM CummAND SYNTAX L
Lt ukiber Tu PrJUUCE ACCZPTABLE LJTRUL, FADILDLY »lwulnes raun
Tre USER [nXee PleCro we LirQadMalluwne
3 . A AenmeTES e Wy e —re
le Che 1lVeNTLTY ur T PSPX+ CUnPunedy PriCedodd rlUn
_ wilCn A LUAY ~UDULE 15 BelNG vederale) (Lav, var g
LUC) °
2. THe Flue wAME SPECLEICALLUN UF 1dm sowil wrusCl
. _Cuui Fluw (evng FlLe) prudulal ol a #dF Aosu-ezlba,
verCaroMid, Lrnad SAALL Jde Cabuee Trhne Sobnis Pluce
] - R S .
: 3, Tne riue vadqe SPECIFLCALILIULUG rur Tre tuliruy rllue
Arr _eodn tdbe du be PitbbuleD).
' PHe wAader Lo wrfCa eAgial: eacutiresS ‘thlo tvbJgsallun 1S

UePrabENL e vl CLheiddab STalaX LdNG

o helavals

ink

AFNAL-TR-83-1045
] .
FASToIN USeRrR'S mANMUAL AGLD INSTALULALTIGH Gulue s 3
‘FASTBIN CURMMANU SYNTAX . Ll JAL o2
FASTWlNEXk LMAGE., LHE ImAGE ACLLVATLIUN SYsilAX Fuasd Ase
DCL 9RUw, DCL FuURELGN AND THE eAT=iwed wlu St AdLbin, Thi
_EPLLDNING SECLTIONS utSCEEpE LACH UF TrneSE L4AGE ACLLIVALLOwN
METHODS, It LS IMPUKRTANT TUO wOTE deke LAl JnbY vee UP
THESE IS uSULALLY uSty,. wHICH INE DePrEdDS N mUuw Lae LUCAL
VAX SYSTEM MANAGER L&STALLED THE rASTBIN ULLILLLY.
2.1 DCL SKUN
FASTALN MAY bt ACTIVALIED USING [HE UCL CUMMARWL SRU~ L dat
{ FORMAT:S
SRUN FASITBIn,.,EXE
IF ACTIVAT=zD Lw THIS MANNER, FaASLIbIN PRUmPLS rUk: -
. le "HEAVER rluES' THE NAME U A UVALA PFlue Inal
BITRYe W ¥-1 X tht LiseMllly e livie POrc AT LooMarn
PRUCEDSSJIR FOR anlCr A LLAL sJducbt e SLa.
\ GhinhleDe ThHo STANUVARL |(EOPULOLO Mins
CAP.DAL = LUc~ilries A unP =
GeMERATLUuN,.
I0OC1.,DAT = POK LUC #1l,
VAPL.LALT = ruUrt VAP 3al. _
VAP2.UAL = Pk VAP #d.
- e DAL - R BULN MEn, X .
mXa,DAT = Pur 7
TADLE 1: STANDARD READEK PFLLe NAGED.
IF A vlLe TYPE 1S NOT SPeCliFlob LT vwiuw vebauvua Tu
JWAT o Lhe Veraull U£K£CIUK1 Jr lne LALA vliued LS
Puiwled TU Y THe LUGICAL NAamE 'FadT_uAC:',
2. 'SLUKCE riles' THE NAdE UE LRt ASULL wbdool osuuslk
tine. Tne ULetalLl bFlui lire LS oMW MANU e
Vet AUl ANECaURY 1o tHe G orot: I ~K.GCioe Job-Uis
Ldrmi Ll ke
C ke BClasaaks vie bl SRUF, sfobobc iYL .
ULEPUL flun odhit) Lol DRt E vASE O AD Lt Olunrte oLt . 1
LTS YR BITL.Y B o _
M _BAnsabPuLs
SKUM PFPADLOLliveLAL oo -
e reabir blbed rASIouAiLAY _ :
[] SLunCeE Pabbtd YTJuapl LUL oAl

< IrE WUlFUl whub 56 fGunt dudedl’s 2

79

AFWAL-TR-83-1045

FASTHIN USER'S MANUAL AND INSTALLATIUN wulue _PhAuk «
FASToIN CUMMAND SINTAX i7 JAt 83

e a——

2.4 LIL Forelu:

1 AvulIllion iU $SlaG fHe PCL SHUN CuMmitnuw, eA4dlot . oAX o
3k ACrIYVAYvey 91 inz OLL FGeRiG. CU me' v UL 2 Lol te o
Megadu Mevuvleko Thatl ewiirfk Tne uowr L U P S
nad del oP LlrHe Sieduus

SFAST3In 3= SeadTanAE:

- — 1
wIiln THIS SYMbBUL Sel UpP, THE FASToIN uUSki mAY CALL rcaolelrn]
USING THE CUmmany? e
SFASTbii ([SUuRCe FlLE | '
o wheRe L) DENOTES A UPTIONAL PARAMETEK,

FASTIIN_ #iLL PKRCMPT FOK: N
_ le 'HEADER riLE:' SE: DESCRIPILUN Lw SeCiluw 2.l huu
TABLE 1.
LF THE USER DIU NOT SPECLFY <SCURCE_FLIwLe> 414 Lak
FASIBLN COMAnNU THEN FASTBIw wlbu PRumbi eue:
2. '"SUUKRCE FILe$' SFE UESCRLPTIUN Lfw SECT 2.1. -
whiEd ACTIVATEZD VIA IHIS FCRELIGN COMMAND #elHJu, EASIsli
ALWNAYS PRUDUCES An ALTPULT Flhe wIln Lht DAME Gh«r A3 LHE
SOURCE FILE BUL «Ith A tILe TYPE UF .8lw . I(He AUVAJLIAUE b
uCh FORELuw uvbR OCL SKHULN CusrEd R T I A
PROCSDUKES. wlL PurELGH CAM KELY ON SImoul Suc3itidlLsv ¢ .o
THE <SULKRCE Fated> whiue OCL Sidn CAsnul,
LAAPRLL S ' o .

SEASTadlLw ‘{U\;Kl‘éhﬁ..ﬁ:p‘»_
HeAuvEr FlLe: CAp

e L N

< LNE UulPuUl vlub =E fCUnrlbtedla D

e ——. e -

2.3 EAlenUbkl UCL StASIBIN

THE EINAL maewer Lt 4nICH EASIRIn Ma¥Y Ue ACLLVatTew L&

rnﬂnqﬁqhmlzg._nxlnmuuu DNCL ESJﬂAND Stofe, L1410 ﬁdfﬁuu
REWULRELS Trons Lk, eadlald [MSTALLLEXK Sla ol ecaSlra is Ants ’

eXrisbeb Cudrany rJRs veSCRioey Ln APPe UL Co et grle
CLUWDIKIuN 15 DALIDFLLY, UHR LSek ALY Llevure eadLoas udlie
PHE 0OCB 3K 'LmA Onuaw L. APPLOVAK A, JLOL Lite Kt ulbex Ui
CUmmnmy, e

80

" AFWAL-TR-83-1045
FASTBLN USEKR'S HAANUAL AuD INSTALLATIUN GulDE Pave 5
FASTBIM CUMmMANU SYwTAX . 17 Jdan ©3

NOle

SHCULD LHE FASIBLN Lmabe co
SET UP LU BE RUN ERUM Blh “Cu
rUREIGN (SEE SeCT 2.4 o8ww
APPENULA C) ANV BAlRoLED vCu,
THE FORELGHN CUMMAND MeTnuu
wlLlu LAKE PRECEDENCE,

3.0 THE FASTBLIN QUTPUT BINARY FlLe

SAORTLY AFTER LSSULNG A LEGAL FASIBIN CUARAWU, PAOLOLW aibl
PERMINATE LEAVInG A BINARY LOAD MODULE FILE ii Ane orellbfel
JR DEFAULT DLIK&clURY. THIS OULPUL FILE dAS Int SAre wAte Ad
-| THE SOURCE F1Lbk AItH A FILE TYPE UF BIN URLESE This UsfFaulil
- #AS UVERRIDDeN,
_THE QUIPUT FILE CAn nGOw BE SPECIFLIED AS INPUY Tu The PSPLLR
LUADER JTILI1TLY anICH #ILUL LOAD [He bINARY ueudbll Cuwe Lein
_THE APPRUPRLATE PSPX+ PROCLSSUR. THE Culc LS 1r&s REAJYL §t
EXECuTIUN,

4,0 CUSTOm FASTBInN neAULeRS

IN ADDAlIun Lu Thec STANDARY PSex+ CumpPutmL ASALLNS
MENTIUNED IN LADBLE L1, I LS POUSSIBLe ruUR A udbEEK LJd Go sernla
A CusTOm neEAvEs Pluk TAAT LId> ACCePTAOLE Lu PASLolY Aldu Iaenl
MAY BE USED {NOSTEAD UF THE STANUARU ALAULRDS wuldflow i the
TABLE., 1TH1S IS UUNE USING THe WESTINGHOUSE Olsbern Jaluills

1. CREATE Am &nPTY SGQURCE F1LE Id4 Tht rfoLLOalol
MANNEK?]

. SCREATE rablY, Al
~2
s

whetRE Z 18 CUNI‘RI)L Lo

. .20 __CALL mplsskn AdD SPECIFY tnk rSPAY Cusdutesd :
PRUICLSSUR Anu PARAmRLEKRS Teang (LU alon Ine '
_ L BEaeErATED nEAuwER dlbz 1) nave,

-——

b . . _ 3. ankd 2iiCby PRUmPTS roR Lae SuuaCea Blum 'Acl,
0 : SPeCIe U avPiL,AC .

i .

de wHEs RINGES FRUTPTS £OR Lae QOLPLL faka tAbu,

SPeCLFY AAAA.uAL YRERE AXAA SEAnud el casleves 1o
meanvlaGroult LU (O, :

81

AFWAL-TR-83-1045

FASTBIN USER'S MANUAL AND INSTALLALTIGN GUIDE __PAGE b
CUSTUM FASTbIN AEADEKRS 1/ UAN 83

. R -

_IHE XXXX.DAT FILE LS Tnk NEW CUSTUM HhEADER #HiCh 4AY oc
SPECIFIED AS LnPUL Tu FASTBIN. LN ESSeNCa A hesUek Fiuk I8
THE LOAD MQDULE FUR Ine EMPTY PROGRAM AwU THAT 13 2AACILY
WHAT THESE STEPS HAVE GENERATED,

T e —— e —————— e - [

82

' AFNAL-TR-83-1045
. APPENDIA A
: _ EXTENDED DCL FASTBIN CUMMANUD SYNEAK
A.l SFASTBIW
INVOKES THE FAST PSPX+ BINARY LOAD #00ULE GEwerATUR wHLCH
CREATES FIGES ACCEPIAGLE AS INPUT TU Ink PSP LUAUER ULLIGLTY
(PSPLUR) .
T TAJ1.1 PURMAT
_ SPFASIBIN <FLLE_SPEC>
¢ . QUALIE LERS DEFAULL o
- 7/CAP NOwe, (1) B
_ /71uC1 " L
710C2 "
_ /VAP1 "
/VAP2 "
. /BULKMEM " o
7MXA "
N JEXPERLmENTALSKFILED SEE LEAT.) _
/OUTPULS<BIN_SPEC> SLE TEAL.
""""" (1). LF /EXPERLMENTAL LS NGT USEU TUnti UnE Ue THe Pindi
_ SEZVEN MUSY BE SPECIFIED UR 4LSt FASleis #ILL PHQMPL
"HEADER FILe:'
~ FASTBIN wliL PROMAPT 'HEAUER Flucl'. dScw L
SeCTIUN 2.1 AND TA®BLE 1.
-

i .

83

y . AFWAL-TR-83-1045

EXPENOED UCL FASToAn COMMAND SYWTAX __PAGE A=
SFASTBIN , 17 gaw 83

P .

A.1.2 PROUMPTS

! FILES <FILE_SPEC>
HEADER FILE: <SEE SECTION 2,1 AND TABLE 1>

A.1.3 CUMMAND PARAMETERS

l, <FILESPEC> SPECIFIES AN ASCIL UCTAL UJhueCl Flue
THAT WLLL BE USEU 1IU CREALIE A PSPA+ olInARY LUAUL ~
MUDULE. LF YOU DO NOT SPECIFY A FILE TYPr, .nAC o
‘ USELU BY DEFAULL., THIS PARAMETER LS REWULKEU anb ‘U
¥ ..] wiLUCARDS ARE ALLOWED IN THe FILE.SPeC.

A.l.4 QUALIFIEKS

1. /CAP' /IUC].' /IOC2, /VAPI' /VAPZ, /oulnarin., /."\XN_]
COnIROL TIHE LTYPE OF LOAD wGLuLe 1Thal vILL ok)
CREATEV, A UNIGUE LOAD MUvULe TALlLugkd [u A
SPECIFIC PSPX+ COMPONENT PROCESSUR Wikl ne CRBATEL
BASED O& THIS WUALIFLER. Uve Gk tnedis 4usLl o
SPECIFIED UNLESS /EAPERIMENTAL 1S Sk [a aniCh
CASE NUNE UF [HESE ARE ALLUWED.

v

2. /OUTPUT = <BINSPEC> CUNIRULS Tr& make ot Tok
“ UUTPUT BINARY LUAD MUDULe FILE. oY DErAUVLLY Faslolu
PROVUCES AN UWUTPUT pILE LIHAT HAS The SAMe wAME A
THe LInPUL OSUURCE FILE EXCEPYL alin & rlue {Yre ur -
' o0liv o when (UL SPECLEY /0ULIPUL E0UY CAad uUveasrloe
! ThiS VeFAULL,

3. /EXPERIMENTAL = <FILE> 1> USUALLY USeh~ FUR
VEVELUPEMENT ONLY, [HIS WUALLF.E&N ALLJYS aim (SLK
1t SPECLFY A LUGAD MUDUGE READER UlLHER inad irUde

_SKELECTED BY THe /ShAP, /IJCl, /9491 wilCees

; WUALIFLIERS, 1H1S EAPERLAENTAL doAUES ~mddt re

.3 : .] CrREATBD USIvg The olfNga Clemmawlt pPdagaibkhbe

3 | 7EAPERIMENTAL MmAY wOT B USky wiln /ZCav, /IuCL,
| /vVAP ETC. uuALIFIebkd,

. semee -

84

AFWAL-TR-83-1045

EXTENDED UCL FASTBIN CUMMANU SYWLAX PAGE A=3 _
SFASTBLN 17 JAw 83

—

A.1.5 EXAMPLES

1. SFASTBIN/CAP IESTFILE
THIS COmMAND GENERATES A " CAP LOAD muuJLe CALLED
TESLFILE.BIN FRUM THE INPUT FILE TeSTribLe.maC .

2, SFASTBIN/VAPL/0QOUTPUT=ZZZ.ABC TST. XXX
THLiS CUMMAND GENERATES A VAPl LOAD #wOGULE CAuLib
ZZZ.AbC FRUM THE SOURCE FILE IST.XXX .

3. SFASTBIN/EXPERIMENTALEBMM.DAL TESTFLILE
THIS CUMMANU GEWERATES A BLWARY LOAD AUUULE CaLwutu
TeSTFILE.BI¥ FRGM THE SUURCE FLLE TESIELLE.AAL .
THE EAPEKRIMENTAL HEADER FlLE oMM, VAL UESCRIsES Tke
PSPX+ CUMPUNENT PROCESSUR FUR wrlCh lcSifrlleobln
WAS GENERATED.

: NOIE
SFASTBIN/EXPRRIMENTALSFASTLUATIVAPLJLAT TeaifTuE
PRUDUCES THE SAME KESULES AS o
SFASToIn/VAPL1 TESTFILE

THE SAME APPLIES TU CAP.DAL, IUCl.UuAl, VAPl.UAY
LIC.

AFWAL-TR-83-1045

APPENDLIX B

FPASIBIN INSTALLATION GUIDW

___B.1__INTRODUCTIGN

oo LHIS APPENDIX DESCRIGES HOW TO RECOVER IHE raSToin FLuES

“““FROM TAPE AND INSIALL 1HE FASIBLIN.EAL LMAGE UN A VAK SISLLM
THAT IS ALREADY EQUIPPED WITH A wESTINGHOUSE PSP SupPPURT

SOFTWARE PACKAGE,

B.Q BACAUP ITAPE

THE FASTBIN SUFTWARE IS PROVIDEY UnN A MAGNETLIC AP 1

T "VAX/VMS UTILITIES REFERENCE MANUAL., ITU RECUVER iHe FliEo,

FIGES INTU YOUR FAVURILE DLRECIURY THUS:

SBACKRUP/VERLFY MmIAO: <YUUR UIRECTURY SPeCLlriCalllh>

BACKUP FORMAT., THE BACKUP UTILITY IS UESCAIsZu Iy Tne

MOUNT__THE TAPE FORELGN (SMOUNY/FORELIGW) AMUD KEUCUVER Tne

B3 PLACING LHE FASTBIN IMAGE

—

THIS SeClIUN DESCR1bBES WHERE TD PLACE Tht ReWulideib ¥ AdikIw

FILES.

PSPSSISTEM: DIKECTORY.

1. COPY ThE FOLLOWING FILES lulu [ke Sislek

FASTBLlNEXE
FASTBIMN,CLL
CAP,uAl
luCl.0Al

) VAPl UAT

4 LAV L DAL

) bi‘ QUAT

g , wXite DAL

AFWAL-TR-83-1045
FASTBIN INSTALLALTION GUIDE PAGE B -2
PLACING THe FASTBIN LMAGE . {7 Jan w3
2. EDIT THE SYSTEM STARTUP _FILE
SYSSMANAGER:SISTARTUP.CUM ANU AUV 1HE FULLIMLEG
COMMANDS S

SASSIGN/SYSLEM PSPSSYSTEM: FAST_LAT:S. o
SASSIGN/SYSTEm PSPSSYSTeMIkASTHIN .eXe FASTEXE:

B-4 CHOUSING THE ACIIVATION METHQD

AT THIS POINT Yuu MUST DECIDE HOw YOU #ANT USEKkS L0 ACTivAle
THE FASTBIn.tXE IMAGE, THt THREk OPTIONS ARE UESCRloatu Lk

SECTION 2 OF THE USER'S MANUAL. WHEN IN cUuglt If 18
SUGGESTED YOU USE ODCL FOREILGN. THE FOLLOWING SECTICNS

DESCRIBE wnAl YUU MUST D0 UDEPENVING ON nUw Yuu «AuT TO

. ACTIVALE FPASTBAN,. A

F R - . e

E - et = - —
. B.4.4 DCL SKUN ACTIVAIION

IF YOU CHOUOSe TU ACIIVATE FASIBIN BY OUGL Sab., T
_INSTALLATLIUN IS COMPLELE. USERS MAY CALL FASTBLN oX:

SRUN FAST.DAT:FASTBIN

_B4d__DCL _FUKRELGw

§ IF_YOU CHUOSE (0 ACTiVATE FASTHIN VIA e JCu FURSIGH
COMMAND SYotlch THEW FOLLOw THESE SIEPS:

1. EDLT rnE SYSTem LOGIN FILE SYSSMANAGERISILUGL.4.CuM
ANU ADU THe CUMMAND
StAST*eliv == SFAST_ EXE:

‘The INSTALLATLIUN 1S Wuw CCAPLEI:-. FASI3ly ™AL be R in
] ACCORDANCE wITH SECTION 2.2 OF IME uSERS MAJUAL,

B.4.3 eXTkiswel UCL SFASTHIN

[F Y39 CHUUSE Iy uSE BRTENDED DCu fnew rduuus tnedd 3iEPS: _

' . . le __EUIT ThE SY¥Sfed LOGIL rile OYS$emawmAukaiaYLuglyolly:
' AMY Auv Tae COmidany
__SoeT CUranny EASTLATIEASTRIn.CLY

A
<k,,amﬂmshtotﬂuzdag!m
’ 87 permit fully legible repreduetcs

AFWAL-TR-83-1045

FASTBIN INSTALLATION GUIDE PASE B=3
CHOUSING THE ACTIVATIUM METHOD 17 JAw 53
— 2, eDIT THE SYSTE STARTUP ¥Iuk
SYSSMANAGER:SYSTARTUP,CUM AND AUD THE CUAWANU
= SMCR INSTALL SYS$SYSTEM:CLEDILOR/PRIVE(CMiXeC)
_ _THE INSTALLATION IS NOw COMPLEVE. EASTbIN “AY oe Fuw Is_
ACCORDANCE WLITH SECilUN 2.3 OF THE USER'S ™ANDAL,

AD-A130 655 MULTIMODE RADAR SIGNAL PROCESSOR INTEGRATION FACILITY
(U) AIR FORCE WRIGHT AERONAUTICAL LABS WRIGHT-PATTERSON
AFB OH J N HORN ET AL. MAY 83 AFWAL-TR-83-1045

F/G 17/9
END
: DTIC

e

UNCLASSIFIED

1

NL

SR
E EEE] lm

3
mmﬂnmnuuum

2f =
=

MICROCOPY RESOLUTION TEST CHART
NATIONM. BUREM OF STANDARDS 1963~ A

APPENDIX C
CAS COMMAND FILE

;
:

AFWAL-TR-83-1045

$! PRUGKAN CAS====TnHIS PRUGRAM INVOKES THE WECESSARY FILE MANIPULATIUNS —
$! FOK_ASSEMBLY UF A CAP PRUGRAM, IT Auso INVOKES TRSCAP AND FASIBIN,
$! IF REQUESTEU, PRINTLIN 1 L AVAILABLE TO Us

$! SEVERAL QUALLFIERS AME AVAIGABLE TO zxecurs A PAND OF THE ASSEMBLY
$! PRUCESS UR ADD THe DEASSEMBLY UPTIUN.

sl
$! TO RUN Tre PROUGWAN TYPE: CAS UPTIONS -
st |
$! AVAILBLE UPL{I0NS ARE: e !
s !
s [====INITIALIZE THE REL F1LE AND EXIT.
$! A=emn=ASSEMBLE THE PROGRAM,
LY Le===LGAD THE PR R AN
$! LT===LQAD AND ruscnp THE PROGRAM.
st uTr==LJAv, The Pr ¥
. $! Deo==ASSENULE, uOAo AND DhASShnabb THe, PRUGKAM,
HAM .
st UTF=~=ASSENBLE, LOAD, usAssunaua. TRSCAP Any FASTBIN The PRUGHAM.
$? DL===LUAD AND DEASSENBLE THE PROGRAM.
. : DLT==LUAD, DEASSEMBLE AND IRSCAP THE Paucuan.
s = DLTF-GUAD, UEASSEN R FAD RUGHAM,
s! Wy uptxouconrAqu)----Assanuuu. LOAVL, lubtAP AND FASTBIN PRUGKAM,
s!
$! WRITTEN BY B.R, STEPHENS, SECAME UPERATIONAL lé=guL=82,
$! :
¢ $! MUDIFIED B=yCT=82 TO INCLUDE THE FASTBIN OPTIUN.
‘ s! T e

' $! TH1S PROGRAM INVUKES SSP AND TRSCAF,
$! NUTe: EMNTEK ONLY THE FILENAME WHEN REQUESTED, U EXTENSLIONIL
] S __ . - S
i ‘ S INQUIRE FILENAME ENTER THE FILENAME ! G&E THe rlLEnane
$ IF_'FSLENGTH(FILENAME)' ,GT. 9 THEs GOTO BADFIL
$ ASSIGA 'FILEWAME',REL FOR050
$_LF P1,808.7L" ,OR, P1.EQS."LL® THEN GOTO LUADL _ ! IF NUT ASS THEN SKip
8 IF P1,edS."DL™ .OK. P1.EQS,"DLT® THEN GOTU LUADL
$ IF P1,EGS,"LIF® .OR. P1,EQS,"DLTE" IH"Y GUIU LOADI _ o
$ CREATE CAS.DAT T CREATE INiTIALIZALION FILE
' ; FILe i
ASG,U 50
ST

ASSIGH/USER.AVGUE WL SYSSOUTPUT — —— -

8$s¢ CAS.DAT ! INLITIALLIZE FlLe

DELELE CAS.UAT;*,FORV26;%
¥ i, nﬂa.*f‘“%ﬁtﬁ'EZTT IF UNLY Ia1TIALLIZING THEN EXLL

. 1

) ! ASSIGN ‘'FILENAME',LIS FORGUG { ASSEmBLY LIST FILk o
| SSP 'cILENAME' .CAP L ASSeMBLE THE PRUGKA#

’ IF P1 .euS._ “A" THEN GOTO &NDA L {F UNLY ASSEMSLING THEH gALL

! . Luav i

! ASS1LN 'FILiaamE',abs FORU2T — -

: JPEN/wKiITE F FM.OAT ! CREATE LUaU FLLR

aRLTE F_"3 Pale”

wRITE v "ASG,A %0"

wRITE F_"234 uggg

aRITE F “In S0,° .rlbuuane
aR1fe ¥ "Lin 32"

ARLTE F Pruu®
UETIZ'rSeXINACL (U, 4,P1)" e
LY orr JEUS. "U" fHEN GOTU DEAS I Le UkadSuAuieG SEl ur LIST Flue
OEASSIGN b Unyub _
ASSion/uSkRLNUDE #LS SISSUUTPUL

.ﬂ“hﬁ@“““&ﬂ“m“ﬂ‘ﬂﬂﬁhﬂﬂ"

f . | -
.) . Copy available w DTIC dum

i
i

[, }

APNAL-TR-83-1045

$ GOL0 LOab

$ DEAS:

$ ARLTE F 93P% DEASSEMBLE®

$ ASSIGM 'FILENAME',LST FOR006

.- L.

o —

$ LOADL:.
$ 4RITE F "; STUP®

s CLOSe ¥

S SSP_FM,DAT) ;uvoua Ink LOAULR . .

s IF DeY .tGS. 0" THEN GUTO PO

$: ___IF SUARIED wiTH LOAD, SKIP ASSEMSLY LIST REWUEST L
$ IF P1l.EUS."L" .GR, P1.E0S."LT" .UR. Pl.£05.°LTF" THEN GUTU SKRIPAS

$ EnDAS *

$ INQUIRE ANS DU YOU WANT AN ASSERMBLY LISTING?
8 IF AnS THEM PKINT 'FILENAME'.LIS

'S PURGE *FILENAMES.* T PURGE AND WRLEIE FILES AS RECESSARY™

$ SAKIPAS:

$ DELETE FORO28.DA1;%,FUR0267%,FOR02578, 'FILENARE ' .REL; ¥
$ DEASSIGH ruk050

$ IF Pl NES, "A" TnEN GUTO NOTA
S$ CONTS.

$: " IF NOT INVURING TRSCAP THeN EXIT
s IF P1,80S,"A" .UR. P1.EQS."D" THEN EXIT

~ § IF P1iEGS. LY UK. PI1.£08.°DL" THEN EXIT
$ OPEN/WRLTE F FM,DAT ‘ ! CREATE IRSCAP FILE
$ wRITK F FILENAME," ,ABS® :
S WwRITe F_FILERAME, ", MAC"
$ CLUSE ¢
$ ASSIGw _FM.,DAT FGRUUS
$ ASSLLN/USERLMULE NL: SYSSOUTPUT
$ TRSCAP_ ' ! INVOKE LRSCAP

¢ e —— -

S DEASSIGN FUROUS ’ .
S DELLTe FM,UAL;®, '¢ILENAME'
$! LF wUT USInG FASTBLN, THEN EXIT,

$ LF_Pi1.eU@S. "LT® 0K, P1.EQS."DT" .OR, Pl.EWS."DLT" [nén bXIL
S FAST *'FILhnAML’ { FASTBIN ThHE PRUGKAM,
CAP

$ DELELE 'FILENAME' mAC: %

$ PURGE 'FlLbuAME' BIN

s EXIT

S BAUFLLS e e e ——
$ WRITE SYSSULTPUT "FILENAME IS TOO LONG!*®

$ EXLT e e
§ PD: 1 ASK [F DEASSEBLY LISLTING 1S NEEUED

$ INQUIRE AnS UJ_JOU WANT A DEASSEMSLY LISTING? L

$ IF AwS THeW PRINT 'FLLENAME',LS]

§S DEASSIUn_ FYnvyd
$ DELETE FORO3I4.DAT;:*

$! - IF _STARTED #]ITH LOAD S«IP ASSEMBLY LIST REWULEST

$ Ir P1,EUS.,"vi" ,OR, P1.EQS,."DLI" TnEN GOTO SKRIPAS

$ SULO ENVLA o

$ nUlAS

$ DEASSIGN ruRU27 o

$ UVELETE r DAT;®,FURLISS®

$ GOLO COaT e

A s e e

AFWAL-TR-83-1045

REFERENCES.

I. Rafael Gonzalez and Paul Wintz, Digital Image Processing, Addison-
Wesley Publishing Coqnny, 1977.

2. PSP-X+ IOC/VAP/CHMNEL BUS USERS MANUAL, 9RAS001HOl, Westinghouse
: Defense and Electronics Systems Center, January 1982. .

3. PSP-X+ CAP PROGRAMMERS MANUALS, 9RA8002HO1, Westinghouse Defense
and Electronics. System Center, January 1982.

4., PSP-X+ COMPILERS REFERENCE MANUAL, 9RA6843HOZ, Hest'lnghouse Defense
and Electronics Systems Center, January 1982.

S. RAMTEK RM-9050 PROGRAMMING. MANUAL, Part No. 503746C, February 1979.
6. VAX/VMS VOLUME 2B, Guide to Using Command Procedures, Version 3.0.

